Download Impedance and Equivalent Circuits

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Impedance Concepts and
Thévenin Equivalent Systems
Learning Objectives
Electrical impedance
Description of 1-D waves in a fluid
equation of motion/constitutive equation
plane
l
waves - pulses
l andd harmonic
h
i waves
frequency and wavelength
acoustic impedance
Thévenin equivalent electrical circuits
Concept of Impedance
basic circuit elements
V(t)
I(t)
resistor
it
V (t ) = R I (t )
capacitor
dV (t )
C
= I (t )
dt
i d
inductor
dI ( t )
V (t ) = L
dt
For alternating (harmonic) voltages and currents
I (t )
= I 0 exp ( −iω t )
resistor
capacitor
inductor
general
impedance
V ( t ) = V0 exp ( −iω t )
V0 = R I 0
I0
V0 =
−iω C
V0 = −iω L I 0
V0 = Z (ω ) I 0
electrical impedance Z = Ze (ohms)
1-D plane wave traveling wave in a fluid
p(x, t ) … pressure in the fluid
ρ … fluid density
vx (x, t) … velocity
dy
p
dz
dx
∂p
p + dx
∂x
∑ F = ma
∂vx
∂p ⎞
⎛
− ⎜ p + dx ⎟ dydz + pdydz = ρ dxdydz
∂x ⎠
∂t
⎝
Equation of motion
∂vx
∂p
−
=ρ
∂x
∂t
Constitutive equation
∂u x
p = −K
∂x
dux
dx
1-D wave
equation
i
K … compressibility
ibili off the
h fluid
fl id
ux
… displacement
∂u x ΔV
=
= relative change in volume
∂x
V
∂ 2 ( ∂u x / ∂x )
∂2 p
− 2 =ρ
∂x
∂t 2
ρ ∂2 p
=
K ∂t 2
∂2 p 1 ∂2 p
− 2 2 =0
2
∂x
c f ∂t
cf =
K
ρ
wave speed in the
fl id
fluid
1-D plane wave solutions
p = f ( t − x / c f ) + g (t + x / c f )
f
g
x
Harmonic waves (or Fourier transforms of transient waves)
p = A ( f ) exp ⎡⎣ −2π if ( t − x / c f ) ⎤⎦ + B ( f ) exp ⎡⎣ −2π if ( t + x / c f ) ⎤⎦
Fourier transform pair
+∞
V ( f ) = ∫ v(t ) exp(2πi f t )dt
−∞
+∞
v(t ) = ∫ V ( f ) exp(−22πi f t )df
−∞
Let
then
V ( f ) = V% ( f ) exp ⎡⎣ 2π if ( x / c f ) ⎤⎦
v (t ) =
+∞
∫ V% ( f ) exp ⎡⎣2π if ( x / c
−∞
f
− t ) ⎤⎦ df
1-D plane wave traveling in the +x-direction
Thus v(t) is a superposition of plane waves
Thus,
Now, let
u = (t − x / c f
)
+∞
Then
% ( f ) exp [ −2π ifu ] df = v% ( u ) = v% ( t − x / c
V
f
∫
)
−∞
where
v% ( t ) ↔ V% ( f )
so
v% ( t − x / c f ) =
+∞
∫ V% ( f ) expp ⎡⎣2π iff ( x / c
−∞
f
− t ) ⎦⎤ dff
Thus, we can always synthesize a traveling plane wave pulse
with
i h a superposition
i i off harmonic
h
i plane
l
waves.
various forms of a harmonic plane wave
traveling in the +x-direction
p = A exp ( 2π ifx / c f − 2π ift )
= A exp ( 2π ifx / c f − iωt )
f = ω / 2π
= A exp ( ikx − iωt )
k = ω / cf
= A exp ( 2π ix
i / λ − iωt )
λ = 2π / k = c f / f
f ... frequency (cycles/sec)
ω …frequency (rad/sec)
k … wave number (rad/length)
λ …wavelength
wavelength (length/cycle)
p = A exp ( 2π ifx / c f − 2π ift )
magnitude of the pressure at a fixed x versus time, t:
t
T… period (sec/cycle)
2π ifT = 2π i
f =
1
T
ω = 2π f
rad/cycle
f
frequency
( l / )
(cycles/sec)
circular frequency
q
y ((rad/sec))
p = A exp ( 2π ifx / c f − 2π ift )
magnitude
i d off the
h pressure at a fixed
fi d time,
i
t, versus distance,
di
x:
x
λ ... wavelength (length/cycle)
fx =
1
λ
k = 2π f x =
rad/cycle
spatial frequency (cycles/length)
2π
λ
spatial circular frequency
(
(wave
number)
b ) (rad/length)
( d/l
h)
p = A exp ( 2π ifx / c f − 2π ift )
magnitude of the pressure at a fixed time, t, versus distance, x:
x
λ ... wavelength (length/cycle)
2π i f λ / c f = 2π i
f λ = cf
fundamental relationship that shows how the
f
frequency
off a plane
l
harmonic
h
i traveling
li wave is
i
related to its wavelength
Example:
consider a 5MHz plane wave traveling in water ( c =1500m/sec).
What is the wave length?
1.5 × 106 mm / sec
λ=
5 × 106 cycle
l / sec
= 0.3mm / cycle
F a plane
For
l
pressure wave traveling
li in
i the
h x-direction
di i
p = f (t − x / c f
Let
)
u = t − x / cf
then
∂vx
∂p
−
=ρ
∂x
∂t
∂p df ( u ) ∂u
1
=
=−
f′
∂x
du ∂x
cf
∂vx
1
=
f′
∂t
ρc f
1
vx =
ρc f
∫
1
f ′∂t =
ρc f
df
f
p
∫ du du = ρ c f = ρ c f
p = ρ c f vx
za = ρc f
S … area
x
specific acoustic impedance
of a pplane wave (p
(pressure/velocity)
y)
F = pS = ρ c f vx S
F = Z a vx
Z a = ρc f S
acoustic impedance
of a plane wave
(force/velocity)
F more generall (harmonic)
For
(h
i ) waves F = Z a (ω ) v
Thévenin equivalent circuit (harmonic voltages and currents)
R1
Vi
C1
R2
R3
V
L1
I
Vs(ω)
( )
Zeq(ω)
I
V
Determining the Thévenin equivalent source
Vs(ω)
Zeq(ω)
V0 open-circuit voltage
Vs = V0
D t
Determining
i i the
th Thévenin
Thé i equivalent
i l t impedance
i
d
Vs − VL = Z eqe I
VL = RL I
Vs(ω)
Zeq(ω)
RL
VL
⎛ Vs
⎞
Z eq = RL ⎜ − 1⎟
⎝ VL ⎠
Example: find the Thévenin equivalent circuit for
the following circuit
R
Vi
C
R
Vi
I
V0
C
open-circuit
p
voltage
g
Vi − V0 = IR
V0 =
I
−iω C
eliminatingg I,, we find
Vi
V0 =
1 − iω RC
Thévenin equivalent source
R
Vi
I1
Vi − VL = I1 R
C
RL
I2
VL = I 2 RL
VL
VL
I1 − I 2 )
(
=
−iω C
Vi
eliminating I1 , I2 gives VL =
(1 − iω RC ) + R / RL
so
⎧⎪ (1 − iω RC ) + R / RL ⎫⎪
⎛ V0 ⎞
Z eq = RL ⎜ − 1⎟ = RL ⎨
− 1⎬
(1 − iω RC )
⎪⎩
⎝ VL ⎠
⎭⎪
⎧⎪ R / RL ⎫⎪
R
= RL ⎨
=
⎬
⎪⎩ (1 − iω RC ) ⎪⎭ (1 − iω RC )
R
Vi((ω))
Vi (ω )
VS (ω ) =
1 − iω RC
C
Z eq (ω ) =
R
1 − iω RC
In many EE books the equivalent impedance is obtained
by simply shorting out (removing) the source and
examining the ratio V/I at the output port:
R
I
I1
V
C
V = R ( I − I1 )
I
V= 1
−iωC
V = R ( I + iωCV )
V (1 − iω RC ) = RI
V
R
Z eq = =
I 1 − iω RC