Download CRISPR-directed mitotic recombination enables genetic

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Heritability of IQ wikipedia , lookup

Genetic algorithm wikipedia , lookup

Gene expression programming wikipedia , lookup

Transcript
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
CRISPR-directedmitoticrecombinationenablesgeneticmappingwithoutcrosses
MeruJ.Sadhu*,JoshuaS.Bloom*,LauraDay,LeonidKruglyak*
DepartmentofHumanGenetics,DepartmentofBiologicalChemistry,andHoward
HughesMedicalInstitute,UniversityofCalifornia,LosAngeles,LosAngeles,CA90095,
USA
*Correspondenceto:[email protected](M.J.S.),[email protected]
(J.S.B.),[email protected](L.K.)
Abstract
Linkageandassociationstudieshavemappedthousandsofgenomicregionsthat
contributetophenotypicvariation,butnarrowingtheseregionstotheunderlyingcausal
genesandvariantshasprovenmuchmorechallenging.Resolutionofgeneticmappingis
limitedbytherecombinationrate.WedevelopedamethodthatusesCRISPRtobuild
mappingpanelswithtargetedrecombinationevents.Wetestedthemethodby
generatingapanelwithrecombinationeventsspacedalongayeastchromosomearm,
mappingtraitvariation,andthentargetingahighdensityofrecombinationeventsto
theregionofinterest.Usingthisapproach,wefine-mappedmanganesesensitivitytoa
singlepolymorphisminthetransporterPmr1.Targetingrecombinationeventsto
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
regionsofinterestallowsustorapidlyandsystematicallyidentifycausalvariants
underlyingtraitdifferences.
IdentificationofDNAsequencedifferencesthatunderlietraitvariationisacentralgoal
ofmoderngeneticresearch.Theprimarytoolsforconnectinggenotypeandphenotype
arelinkageandassociationstudies.Inthesestudies,co-inheritanceofgeneticmarkers
withthetraitofinterestinlargepanelsofindividualsisusedtolocalizevariantsthat
influencethetraittospecificregionsofthegenome.Thelocalizationreliesonmeiotic
recombinationeventsthatbreakuplinkagebetweenmarkersonachromosome.
Therefore,thespatialresolutionofgeneticmappingislimitedbytherecombination
rate.Inpractice,therecombinationrateinmostsettingsistoolowtoresolvethe
mappedregionstoindividualgenes,muchlesstospecificvariantswithingenes.
Increasingmappingresolutionrequiresconstructionofever-largerpanelsofindividuals
and/oradditionalgenerationsofrecombination,andtheseapproachesarelaboriousto
thepointofoftenbeingimpractical.Asaconsequence,thegenesandvariants
underlyingtraitvariationhaveyettobeidentifiedforthevastmajorityofregions
implicatedbylinkageorassociationmapping.
Toaddressthisproblem,wehavedevisedanewmethodforgeneticmappingthat
preciselytargetsrecombinationeventstoregionsofinterest.Themethoduses
recombinationeventsthatoccurduringmitosisratherthanmeiosis.Raremitotic
recombinationeventsoccurnaturallywhenachromosomaldoublestrandbreak(DSB)is
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
repairedbyhomologousrecombination(HR)thatleadstotheformationofa
recombinedchromosome(YinandPetes2013).Inaheterozygousindividual,mitotic
celldivisioncanthengeneratedaughtercellswithanewgenotypethatiscompletely
homozygousfromtherecombinationsitetothetelomereandunchangedheterozygous
everywhereelse(Fig.1A);suchaneventistermed“lossofheterozygosity”(LOH).
IndividualswithLOHeventsatvariouslocationsinthegenomehavebeenusedto
constructageneticmap(Hensonetal.1991),andthisandrelatedapproaches(Laureau
etal.2016)can,inprinciple,beusedtomapthegeneticbasisoftraitvariation(Fig.1B).
However,thisapproachhasbeenlimitedinpracticebytheverylowfrequencyof
naturalmitoticrecombinationevents.
WehaveleveragedtheCRISPR-Cas9systemtoproducetargetedmitoticrecombination
eventsathighfrequencyandatanydesiredlocation,allowingfacileconstructionof
LOH-basedmappingpanels.IntheCRISPR(clustered,regularlyinterspaced,short
palindromicrepeats)system,thebacterialendonucleaseCas9isdirectedtocreatea
DSBatasitespecifiedbyavariabletargetingsequenceofaboundguideRNA(gRNA)
(DoudnaandCharpentier2014).Successfulcuttingalsorequiresthetargetedsequence
tobefollowedbyaninvariantprotospacer-adjacentmotif(PAM).AnLOHeventina
heterozygousdiploidindividualcanbegeneratedbycuttingonlyonechromosome,
leavingitshomologintacttoserveasatemplateforrepairbyHR.Thisisaccomplished
byusingpolymorphicheterozygousPAMsitesthatarepresentononlyoneofthetwo
chromosomes.
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
InordertodemonstratethatLOHeventscanbetargetedtoprecisegenomiclociusing
CRISPR,wedesigned95gRNAstargetingStreptococcuspyogenesCas9tosites
distributedacrosstheleftarmofS.cerevisiaechromosome7(Chr7L).ThegRNAs
targetedheterozygoussitesinadiploidyeaststraingeneratedbycrossingalabstrain
(BY)andavineyardstrain(RM),usingPAMspolymorphicbetweenthetwostrains.After
cutting,repair,andmitosis,cellsinwhichtheDSBrepairledtoanLOHeventwere
isolatedbyfluorescence-activatedcellsorting(FACS)throughtheirlossofatelomereproximalgreenfluorescentprotein(GFP)gene.WepickedapproximatelyfourGFP(-)
linespertargetedsite,foratotalof384lines.Genotypingbylow-coveragewholegenomesequencingdemonstratedthatCRISPR-inducedrecombinationwashighly
effective,withLOHeventsinmorethan95%oflinesandfewoff-targeteffects
(SupplementaryMethods).MostLOHrecombinationeventsoccurredwithin20kbof
thetargetedcutsite(Fig.2),consistentwithpreviousmeasurementsofLOHgene
conversiontractlength(St.CharlesandPetes2013).LOHeventsweresuccessfully
generatedatsitesacrosstheentirelengthofthetargetedchromosomearm(Fig.2),
demonstratingthatourmethodisnotlimitedtocertaingenomiccontexts.
WenextusedtheLOHpaneltomapquantitativetraitstolocionChr7L.Wemeasured
growthofeachofthe384LOHlinesin12differentconditions,chosenbecausewe
previouslymappedquantitativetraitloci(QTLs)forgrowthintheseconditionstoChr7L.
Inparallel,wemeasuredgrowthof768segregantsfromacrossbetweenBYandRM
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
(Bloometal.2013).Oneofthetraits,growthon10mMmanganesesulfate,mappedto
alarge-effectQTLwithamaximumLODscoreof109.4intheLOHpanel(Fig.3).The
confidenceintervalobtainedwiththe384LOHlinesoverlappedwithandwasnarrower
(2.9kb)thanthatobtainedwith768segregants(3.9kb).TheLOH-basedinterval
containedtwogenesand12polymorphismsbetweenBYandRM.Weidentified
concordantQTLsofsmallereffectforeightothertraitsinthetwopanels(fig.S1).Two
traitsmappedtoaQTLofsmalleffectsizeinjustonepanel,likelyduetolowstatistical
power(fig.S2).OnetraitlackedaChr7LQTLinbothpanels.
Torapidlyfine-mapthecausalvariantformanganesesensitivity,wegeneratedasecond
panelofLOHlineswhoserecombinationeventswerealltargetedtothemapped
manganesesensitivityinterval.WetookadvantageofthefactthatLOHgeneconversion
tractsvaryinlength,whichmeansthatindifferentindividuals,DSBsgeneratedbythe
samegRNAcanleadtoslightlydifferentLOHcrossoversites,typicallywithin10kbof
theDSB(St.CharlesandPetes2013).Weisolated358GFP(-)linesgeneratedwiththree
gRNAstargetingsitesnearthemappedinterval.Wegenotypedthispanelbysequencing
andobservedthat46ofthelines(13.1%)hadarecombinationeventwithinthe2.9kb
QTLinterval;together,therecombinationeventsseparatedalmostallthevariantsinthe
interval(Fig.4A).Incontrast,only0.7%ofsegregantshadrecombinationeventsinthe
interval(Bloometal.2013).Toobtainacomparablenumberofrecombinationeventsat
thislocusbyrandommeioticsegregation,asegregantpanelwouldrequiremorethan
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
7,500lines.Thus,withtargetedLOHevents,wecanineffectgenerateunnaturally
strongrecombinationhotspotsatanyregionofinterest(fig.S3).
Wemeasuredmanganesesensitivityinthisfine-mappingpanel(Fig.4B).Comparisonof
thepanelphenotypeswiththebreakpointlocationspinpointedasinglepolymorphism
asresponsibleforincreasedsensitivityinBY.Thepolymorphismchangesa
phenylalanineinBYtoaleucineinRMatposition548ofPmr1,amanganese
transporter.SixlineshadrecombinationeventsbetweenPmr1-F548Landtheclosest
polymorphismtotheright,402bpaway,andwereeitherfullysensitiveorresistantto
manganese,dependingonwhichPmr1-F548Lallelewashomozygousintheline.One
linehadarecombinationbetweenPmr1-F548Landtheclosestpolymorphismtothe
left,125bpaway,andshowedtheintermediatemanganesesensitivityphenotype
expectedforaheterozygoteatthecausalvariant.LODscoreanalysisofthefinemappingpanelalsoidentifiedasupportintervalcontainingonlyPmr1-F548L(Fig.4B).
TodirectlytesttheeffectofPmr1variantsonmanganesesensitivity,weindividually
engineeredtheRMallelesofPmr1-F548L,thetwoneighboringpolymorphisms,aswell
asthetworemainingnonsynonymousPmr1polymorphismsintoBY.Variant
replacementswerecarriedoutinasinglestepbyCRISPR-directedDSBformation
combinedwithrepairoffasuppliedtemplatecarryingthedesiredallele.Asexpected
basedontheLOHfine-mapping,changingphenylalanine-548toleucinemadeBY
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
significantlymoreresistanttomanganese,whereasnoneoftheotherfour
polymorphismsqueriedhadasignificanteffectonmanganesesensitivity(Fig.5).
PMR1encodesanionpumpthattransportsmanganeseandcalciumintotheGolgi
(Culottaetal.2005).Pmr1isamemberoftheP-typeATPasefamilyofionandlipid
pumpsthatarefoundinallbranchesoflife,andmanyotherP-typeATPaseshavea
conservedleucineatthepositionhomologoustophenylalanine-548ofPmr1.TheNMR
structureoftheratsodiumpump(Hilgeetal.2003)andthecrystalstructureofthe
rabbitcalciumpump(ToyoshimaandMizutani2004)showaleucineatthehomologous
positionmakingdirectcontactwithATP(fig.S4).Furthermore,mutatingthe
homologousleucineoftherabbitcalciumpumptophenylalaninedecreasesfunctionby
affectingATPbinding(Clausenetal.2003).Thus,theF548Lpolymorphismisexpected
toreducetheabilityofPmr1BYtotransportmanganeseintotheGolgi,relativeto
Pmr1RM,consistentwiththeobservedmanganesesensitivityofBY.
Pmr1leucine-548isconservedacrossfungi,withafewspecieshavinganisoleucineor
valineatthehomologousposition,andnonehavingphenylalanine(fig.S5).IntheS.
cerevisiaepopulation,almostallsequencedPMR1alleleshaveleucine-548,with
phenylalanine-548foundonlyinBYandotherlaboratoryyeaststrains(Litietal.2009;
Songetal.2015)whosePMR1allelesarelikelydirectlyrelatedtoBY(Schachereretal.
2009).ThisregionofBYChr7isinheritedfromEM93,adiploidyeaststrainisolated
fromafiginCaliforniain1938(MortimerandJohnston1986).SequencingofPMR1in
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
EM93revealedthatEM93isheterozygousforPmr1-F548L(fig.S6),suggestingeither
thatthemutationisnotlaboratory-derivedorthatitoccurredbetweentheisolationof
anditsentryintoastockcollection.
Decadesofmappingstudieshaveuncoveredlociformyriadtraits,butidentificationof
theunderlyinggenesandvariantshaslagged.WedevelopedanewCRISPR-assisted
mappingapproachthatpromisestoclosethisgap.OurapproachusesCRISPRto
generatetargetedrecombinationeventsdenselycoveringaregionofinterestofany
size.WefirstgeneratedCRISPR-directedLOHeventsthatspanayeastchromosome
arm,andusedtheresultinglinestomaptraitvariation.WethensaturatedaQTL
intervalwithrecombinationeventstorapidlyidentifyasinglecausalpolymorphism
responsibleformanganesesensitivityinlaboratorystrainsofS.cerevisiae.We
confirmedthecausalroleofthispolymorphismbydirectCRISPR-assistedengineeringof
theresistancealleleintoasensitivestrain.Incontrasttopreviousstrategies,our
methodgeneratesamuchhigherdensityofrecombinationevents,iseasilytargetableto
anyregionofthegenome,anddoesnotrequireextratime-consuminggenerationsof
crossingtoincreaserecombinationfrequency.
WeanticipatethattraitmappingwithtargetedLOHpanelswillgreatlyaideffortsto
understandthegeneticbasisoftraitvariation.Inadditiontomanyapplicationsinsinglecelledorganisms,LOHpanelscouldbegeneratedfromculturedcells,enablinginvitro
geneticdissectionofhumantraitswithcellularphenotypes.Mappingresolutionin
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
multicellularorganismscouldbeenhancedwithCRISPR-directedmeioticrecombination
events.Indeed,themutagenicchainreactionsystemdevelopedinvivoinfruitflies
(GantzandBier2015)andmosquitos(Gantzetal.2015;Hammondetal.2015)uses
CRISPRtogenerategeneconversioneventsinmeiosiswithextremelyhighefficiency.
AnotherapproachwouldbetostimulateLOHduringearlydevelopment,generating
chimericindividuals.AnotherapproachwouldbetostimulateLOHearlyin
development,generatingchimericindividuals.ThetargetedLOHmethodalsohasthe
excitingpotentialtobeappliedtoviableinterspecieshybridsthatcannotproduce
offspring,allowingtraitvariationbetweenspeciestobestudiedgeneticallybeyondthe
fewsystemswhereitiscurrentlypossible(OrrandPresgraves2000;Woodruffetal.
2010).
Recently,severalgroupshavereportedusingCRISPRtocreatechromosomal
rearrangements(ChoiandMeyerson2014;Maddaloetal.2014;Lietal.2015).Tothe
bestofourknowledge,oursisthefirstreportofusingCRISPRtogenerateLOHevents.
Inadditiontotheirresearchapplications,targetableendonucleasesholdpromisefor
genetherapy(Hsuetal.2014;Tebasetal.2014).Certaindiseaseallelesmaybevery
difficulttodirectlytargetbyCRISPRbecauseoftheirsequencecomplexity;oneexample
isprovidedbytheexpandedtrinucleotiderepeatsthatunderlieHuntington’sdisease.In
thesecases,directingaDSBtooccurinthevicinityofapathogenicallelesothatitis
replacedwithitsnonpathogeniccounterpartbyLOHmayrepresentamorefeasible
alternative.
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
Acknowledgements
WethankthemembersoftheKruglyaklaboratoryforhelpfuldiscussionandcritical
readingofthemanuscript,andGeorgeChurchforplasmids.Fundingwasprovidedby
theHowardHughesMedicalInstituteandNIHgrantR01GM102308(L.K.).
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
Fig.1:DSBsgeneratedbyCas9indiploidmitoticcellscanleadtomitoticrecombination
andlossofheterozygosity(LOH).(A)LOHcanresultfromrepairfollowingadoublestrandbreak(DSB)inmitosis,whichisgeneratedbyCRISPR.IndividualswithLOHevents
areisolatedviathelossofaheterozygousdominantmarker,denotedwithanasterisk
(*).(B)BymeasuringtraitvaluesinapanelofindividualswithLOHeventsdistributed
acrossaregionofinterest,wecanmapgeneticvariantsthatcontributetotrait
variation.Theprocesscanbeiteratedtogainextremelyfinemappingresolution.
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
300 kb
200 kb
0
100 kb
Observed LOH recombination position
400 kb
cen
500 kb
cen
0
100 kb
200 kb
300 kb
400 kb
500 kb
Position targeted for DSB
Fig.2:ObservedLOHrecombinationlocationvs.siteofDSBtarget.Foreachindividualin
thepanelwithaChr7Lrecombinationevent,thesiteofitsrecombinationeventis
plottedagainstthesitetargetedforDSBformationinthatindividual.Individuals
targetedtogainBYandRMhomozygosityareplottedinorangeandpurple,
respectively.Thedashedlinesencloseindividualswithrecombinationeventswithin20
kbofthetargetedsite.
60
50
100
40
80
20
20
40
30
LOD
60
10
0
growth on 10 mM Manganese Sulfate (colony radius)
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
0
100kb
200kb
300kb
Chr 7 position
400kb
500kb
Fig.3:Sensitivitytomanganesevs.observedLOHrecombinationlocation.Foreach
individualintheChr7Lpanel,thesiteoftheLOHrecombinationeventisplottedagainst
manganesesensitivity,measuredascolonyradiusaftergrowthon10mMmanganese
sulfateplates.OrangeandpurplepointsdenoteindividualsthatarehomozygousBYand
RMtotheleftoftheirrecombinationevents,respectively.(Allindividualsare
heterozygousBY/RMtotherightoftheirrecombinationevents.)Thegraylineplotsthe
LODscorebypositionalongChr7Lformanganesesensitivity.Dashedverticallines
denotetheQTLsupportinterval.
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
4
0
2
cM/kb
6
8
A
190 kb
Chr 7 position
195 kb
100
35
150
40
185 kb
50
30
LOD
BY/RM polymorphism
0
25
B
growth on 10 mM Manganese Sulfate (colony radius)
180 kb
|||
| || ||| | ||
186 kb
|| || | || || |
||
188 kb
||
|
||
| | ||
190 kb
Chr 7 position
| |
|
|
192 kb
|
| || |
194 kb
||
Fig.4:Targetedhigh-resolutionmappingofmanganesesensitivity.(A)Ratioof
recombinationrate(incentimorgans;cM)tophysicaldistancenearthemanganese
sensitivityQTL,forthemanganesefine-mappingLOHpanel(black)andasegregant
panel(red)(Bloometal.2013).cM/kbisshownforintervalsbetweenBY/RM
polymorphismsthatareatleast300bpapart;thefine-mappingpanelcontains
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
recombinationeventsbetweenallsuchpairsofpolymorphismsintheinterval,ascM/kb
doesnotdroptozero.The2.9kbQTLintervaldeterminedbythewhole-Chr7LLOH
panelisdenotedwithdashedlines.(B)Recombinationsitesofindividualsinthefinemappingpanelplottedagainsttheirmanganesesensitivity,asinFigure3,nearthe
manganesesensitivityQTL.ShownbelowareallBY/RMpolymorphismsintheregion,as
wellasallopenreadingframes.DashedbluelinesdenotetheQTLsupportintervalfor
thefine-mappingpanel;forreference,dashedblacklinesdenotetheQTLsupport
intervalforthewhole-Chr7Lpanel.
30
35
40
*
25
growth on 10 mM Manganese Sulfate (colony radius)
45
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
BY
RM
A46T
I187L
L414M
F548L
BY with Pmr1 site-directed mutations
A589 (Syn)
Fig.5:DirectintroductionofPmr1-F548LintoBYenhancesmanganeseresistance.
BoxplotsofmanganesesensitivityforstrainswithsinglePMR1variantsintroducedfrom
RMintoBY,alongwiththeBYandRMparentalstrains.n≥10forallgenotypes.*p<
0.001incomparisontoBY.
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
References
BloomJ.S.,EhrenreichI.M.,LooW.T.,LiteT.-L.V,KruglyakL.,2013Findingthesources
ofmissingheritabilityinayeastcross.Nature494:234–237.
CharlesJ.St.,PetesT.D.,2013High-ResolutionMappingofSpontaneousMitotic
RecombinationHotspotsonthe1.1MbArmofYeastChromosomeIV.PLoSGenet.
9.
ChoiP.S.,MeyersonM.,2014TargetedgenomicrearrangementsusingCRISPR/Cas
technology.Nat.Commun.5:3728.
ClausenJ.D.,McIntoshD.B.,VilsenB.,WoolleyD.G.,AndersenJ.P.,2003Importance
ofconservedN-domainresiduesThr441,Glu442,Lys515,Arg560,andLeu562of
sarcoplasmicreticulumCa2+-ATPaseforMgATPbindingandsubsequentcatalytic
steps.Plasticityofthenucleotide-bindingsite.J.Biol.Chem.278:20245–20258.
CulottaV.C.,YangM.,HallM.D.,2005Manganesetransportandtrafficking:lessons
learnedfromSaccharomycescerevisiae.Eukaryot.Cell4:1159–65.
DoudnaJ.A.,CharpentierE.,2014ThenewfrontierofgenomeengineeringwithCRISPRCas9.Science.346:1258096–1258096.
GantzV.M.,BierE.,2015Themutagenicchainreaction:Amethodforconverting
heterozygoustohomozygousmutations.Science.3042:1–7.
GantzV.M.,JasinskieneN.,TatarenkovaO.,FazekasA.,MaciasV.M.,BierE.,JamesA.
a.,2015HighlyefficientCas9-mediatedgenedriveforpopulationmodificationof
themalariavectormosquitoAnophelesstephensi.Proc.Natl.Acad.Sci.:
201521077.
HammondA.,GaliziR.,KyrouK.,SimoniA.,SiniscalchiC.,KatsanosD.,GribbleM.,Baker
D.,MaroisE.,RussellS.,BurtA.,WindbichlerN.,CrisantiA.,NolanT.,2015A
CRISPR-Cas9genedrivesystemtargetingfemalereproductioninthemalaria
mosquitovectorAnophelesgambiae.Nat.Biotechnol.34:1–8.
HensonV.,PalmerL.,BanksS.,NadeauJ.H.,CarlsonG.A.,1991Lossofheterozygosity
andmitoticlinkagemapsinthemouse.Proc.Natl.Acad.Sci.U.S.A.88:6486–
6490.
HilgeM.,SiegalG.,VuisterG.W.,GüntertP.,GloorS.M.,AbrahamsJ.P.,2003ATPinducedconformationalchangesofthenucleotide-bindingdomainofNa,KATPase.Nat.Struct.Biol.10:468–474.
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
HsuP.D.,LanderE.S.,ZhangF.,2014DevelopmentandApplicationsofCRISPR-Cas9for
GenomeEngineering.Cell157:1262–1278.
LaureauR.,LoeilletS.,SalinasF.,BergströmA.,Legoix-NéP.,LitiG.,NicolasA.,2016
ExtensiveRecombinationofaYeastDiploidHybridthroughMeioticReversion.
PLOSGenet.12:e1005781.
LiJ.,ShouJ.,GuoY.,TangY.,WuY.,JiaZ.,ZhaiY.,ChenZ.,XuQ.,WuQ.,2015Efficient
inversionsandduplicationsofmammalianregulatoryDNAelementsandgene
clustersbyCRISPR/Cas9.J.Mol.CellBiol.7:284–298.
LitiG.,CarterD.,MosesA.,WarringerJ.,PartsL.,JamesS.,DaveyR.,RobertsI.,BurtA.,
KoufopanouV.,TsaiI.,BergmanC.,BensassonD.,O/’KellyM.,OudenaardenA.van,
BartonD.,BailesE.,NguyenA.,JonesM.,QuailM.,GoodheadI.,SimsS.,SmithF.,
BlombergA.,DurbinR.,LouisE.,2009Populationgenomicsofdomesticandwild
yeasts.Nature458:337–341.
MaddaloD.,ManchadoE.,ConcepcionC.P.,BonettiC.,VidigalJ.A.,HanY.-C.,
OgrodowskiP.,CrippaA.,RekhtmanN.,StanchinaE.de,LoweS.W.,VenturaA.,
2014Invivoengineeringofoncogenicchromosomalrearrangementswiththe
CRISPR/Cas9system.Nature516:423–427.
MortimerR.K.,JohnstonJ.R.,1986Genealogyofprincipalstrainsoftheyeastgenetic
stockcenter.Genetics113:35–43.
OrrH.A.,PresgravesD.C.,2000Speciationbypostzygoticisolation:Forces,genesand
molecules.BioEssays22:1085–1094.
SchachererJ.,ShapiroJ.A.,RuderferD.M.,KruglyakL.,2009Comprehensive
polymorphismsurveyelucidatespopulationstructureofSaccharomycescerevisiae.
Nature458:342–345.
SongG.,DickinsB.J.A.,DemeterJ.,EngelS.,DunnB.,CherryJ.M.,2015AGAPE
(AutomatedGenomeAnalysisPipelinE)forpan-genomeanalysisofSaccharomyces
cerevisiae.PLoSOne10:e0120671.
TebasP.,SteinD.,TangW.W.,FrankI.,WangS.Q.,LeeG.,SprattS.K.,SuroskyR.T.,
GiedlinM.A.,NicholG.,HolmesM.C.,GregoryP.D.,AndoD.G.,KalosM.,Collman
R.G.,Binder-SchollG.,PlesaG.,HwangW.-T.,LevineB.L.,JuneC.H.,2014Gene
editingofCCR5inautologousCD4TcellsofpersonsinfectedwithHIV.N.Engl.J.
Med.370:901–10.
ToyoshimaC.,MizutaniT.,2004CrystalstructureofthecalciumpumpwithaboundATP
bioRxiv preprint first posted online Feb. 19, 2016; doi: http://dx.doi.org/10.1101/040428. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
analogue.Nature430:529–535.
WoodruffG.C.,EkeO.,BairdS.E.,FélixM.-A.A.,HaagE.S.,2010Insightsintospecies
divergenceandtheevolutionofhermaphroditismfromfertileinterspecieshybrids
ofCaenorhabditisnematodes.Genetics186:997–1012.
YinY.,PetesT.D.,2013Genome-WideHigh-ResolutionMappingofUV-InducedMitotic
RecombinationEventsinSaccharomycescerevisiae.PLoSGenet9:e1003894+.