Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Integration Techniques Differential and Integral Calculus Prof. Lahcen Laayouni School of science and engineering El Akhawayn University Trigonometric Integrals Friday, April 25th , 2008 Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Outline 1 Integration Techniques Trigonometric Integrals Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Example 1: Evaluate the indefinite integral Z sin2 3xdx . Solution: Using the half-angle identity, we get Z Z 1 − cos 6x sin2 3xdx = dx 2 1 1 = x − sin 6x + C 2 6 Example 2: Evaluate the integral Z sin3 x cos x dx . Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Solution: Setting u = sin x , so du = cos x dx , thus Z Z 1 sin3 x cos x dx = u 3 du = u 4 + C 4 1 = sin4 x + C. 4 Example 3: Evaluate Z sin5 x cos2 x dx . Solution: We separate sine factor and rewrite the remaining sin4 x factor in terms of cos x , we obtain sin5 x cos2 x = (sin2 x)2 cos2 x sin x = (1 − cos2 x)2 cos2 x sin x . Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Solution:(Continue) Substituting u = cos x , we have du = − sin xdx , then Z 5 2 sin x cos x dx = Z (sin2 x)2 cos2 xsin x dx = Z (1 − cos2 x)2 cos2 x sin x dx = Z = − 2 2 2 (1 − u ) u (−du) = − u3 2 5 1 7 − u + u 3 5 7 Z (u 2 − 2u 4 + u 6 )du +C 1 2 1 = − cos3 x + cos5 x − cos7 x + C. 3 5 7 Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Strategy for evaluating Z sinm x cosn x dx : If the power of cosine is odd (n = 2k + 1) , save one cosine factor and use cos2 x = 1 − sin2 x to express the remaining factors in terms of sine Z Z m n sinm x cos2k +1 x dx sin x cos x dx = = Z sinm x(cos2 )k cos x dx = Z sinm (1 − sin2 x)k cos x dx Then substitute u = sin x . Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Strategy for evaluating Z sinm x cosn x dx : If the power of sine is odd (m = 2k + 1) , save one sine factor and use sin2 x = 1 − cos2 x to express the remaining factors in terms of cosine Z Z m n sin2k +1 x cosn x dx sin x cos x dx = = Z (sin2 )k x cosn sin x dx = Z (1 − cos2 x)k cosn x sin x dx Then substitute u = cos x . Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Strategy for evaluating Z sinm x cosn x dx : If the powers of both sine and cosine are even, use the half-angle identities sin2 x = 1 (1 − cos 2x) , 2 cos2 x = 1 (1 + cos 2x) 2 It is sometimes helpful to use the identity sin x cos x = 1 sin 2x . 2 Example 4: Evaluate Z tan6 x sec4 x dx . Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Solution: Separating one sec2 x factor and using the identity sec2 x = 1 + tan2 x , we obtain Z 6 4 tan x sec x dx = Z tan6 x sec2 x sec2 x dx = Z tan6 x(1 + tan2 x) sec2 x dx Substituting u = tan x , so du = sec2 xdx , then Z Z Z 6 4 6 2 tan x sec x dx = u (1 + u )du = (u 6 + u 8 )du = u7 u9 1 1 + + C = tan7 x + tan9 x + C 7 9 7 9 Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Example 5: Evaluate Z tan5 x sec7 x dx . Solution: Rewriting the integral and using the identity tan2 x = sec2 x − 1 , we obtain Z Z 5 7 tan4 x sec6 x sec x tan x dx tan x sec x dx = = Z (sec2 x − 1)2 sec6 x sec x tan x dx. Setting u = sec x , so du = sec x tan x dx , then Z Z 5 7 tan x sec x dx = (u 2 − 1)2 u 6 du. Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Solution: Thus Z Z 5 7 tan x sec x dx = (u 4 − 2u 2 + 1)u 6 du = Z = u 11 u9 u7 −2 + +C 11 9 7 = 1 2 1 sec11 x − sec9 x + sec7 x + C. 11 9 7 (u 10 − 2u 8 + u 6 )du Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Strategy for evaluating Z tanm x secn x dx If the power of secant is even (n = 2k, k ≥ 2) , save a factor of sec2 x and use sec2 x = 1 + tan2 x to express the remaining factors in terms of tan x Z Z m n tan x sec x dx = tanm x sec2k x dx = Z tanm x(sec2 x)k −1 sec2 x dx = Z tanm x(1 + tan2 x)k −1 sec2 x dx Then substitute u = tan x . Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Strategy for evaluating Z tanm x secn x dx If the power of tangent is odd (m = 2k + 1) , save a factor of sec x tan x and use tan2 x = sec2 x − 1 to express the remaining factors in terms of sec x Z Z tanm x secn x dx = tan2k +1 x secn x dx = Z (tan2 x)k secn−1 sec x tan x dx = Z (sec2 x − 1)k secn−1 x sec x tan x dx Then substitute u = sec x . Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Example 6: Evaluate the indefinite integral Z sec x dx . Solution: First, we rewrite the secant term as follows sec x = 1 cos x cos x = . = 2 cos x cos x 1 − sin2 x Next we use the algebraic identity 1 1 1 1 = + . 2 1+x 1−x 1 − x2 then 2 cos x 2 1 − sin x = cos x cos x + . 1 − sin x 1 + sin x Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Solution: Therefore Z sec x dx = = 1 2 Z cos x cos x + 1 + sin x 1 − sin x dx 1 [ln |1 + sin x| − ln |1 − sin x|] + C 2 or Z sec x dx 1 1 + sin x 1 (1 + sin x)2 ln + C = ln +C 2 1 − sin x 2 1 − sin2 x (1 + sin x)2 1/2 1 + sin x +C = ln + C = ln cos x cos2 x = = ln |sec x + tan x| + C. Z Similarly, we can show that csc x dx = − ln | csc x + cot x| + C . Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Example 7: Evaluate the integral Z sin 3x cos 2x dx . Solution: Applying the trigonometry identity sin A cos B = we get Z sin 3x cos 2x dx = = = 1 [sin(A − B) + sin(A + B)] , 2 Z 1 [sin(3 − 2)x + sin(2 + 3)x] dx 2 Z 1 [sin x + sin(5x)] dx 2 1 1 − cos x − cos 5x + C. 2 5 Prof. Lahcen Laayouni Differential and Integral Calculus Integration Techniques Trigonometric Integrals Integration Techniques Trigonometric identities: For all A and B , we have sin A sin B = sin A cos B = cos A cos B = 1 [cos(A − B) − cos(A + B)] 2 1 [sin(A − B) + sin(A + B)] 2 1 [cos(A − B) + cos(A + B)] 2 Prof. Lahcen Laayouni Differential and Integral Calculus