Download Differential and Integral Calculus

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Integration Techniques
Differential and Integral Calculus
Prof. Lahcen Laayouni
School of science and engineering
El Akhawayn University
Trigonometric Integrals
Friday, April 25th , 2008
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Outline
1
Integration Techniques
Trigonometric Integrals
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Example 1:
Evaluate the indefinite integral
Z
sin2 3xdx .
Solution:
Using the half-angle identity, we get
Z
Z 1 − cos 6x
sin2 3xdx =
dx
2
1
1
=
x − sin 6x + C
2
6
Example 2:
Evaluate the integral
Z
sin3 x cos x dx .
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Solution:
Setting u = sin x , so du = cos x dx , thus
Z
Z
1
sin3 x cos x dx =
u 3 du = u 4 + C
4
1
=
sin4 x + C.
4
Example 3:
Evaluate
Z
sin5 x cos2 x dx .
Solution:
We separate sine factor and rewrite the remaining sin4 x factor in terms
of cos x , we obtain
sin5 x cos2 x = (sin2 x)2 cos2 x sin x = (1 − cos2 x)2 cos2 x sin x .
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Solution:(Continue)
Substituting u = cos x , we have du = − sin xdx , then
Z
5
2
sin x cos x dx
=
Z
(sin2 x)2 cos2 xsin x dx
=
Z
(1 − cos2 x)2 cos2 x sin x dx
=
Z
= −
2 2 2
(1 − u ) u (−du) = −
u3 2 5 1 7
− u + u
3
5
7
Z
(u 2 − 2u 4 + u 6 )du
+C
1
2
1
= − cos3 x + cos5 x − cos7 x + C.
3
5
7
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Strategy for evaluating
Z
sinm x cosn x dx :
If the power of cosine is odd (n = 2k + 1) , save one cosine factor
and use cos2 x = 1 − sin2 x to express the remaining factors in
terms of sine
Z
Z
m
n
sinm x cos2k +1 x dx
sin x cos x dx =
=
Z
sinm x(cos2 )k cos x dx
=
Z
sinm (1 − sin2 x)k cos x dx
Then substitute u = sin x .
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Strategy for evaluating
Z
sinm x cosn x dx :
If the power of sine is odd (m = 2k + 1) , save one sine factor and
use sin2 x = 1 − cos2 x to express the remaining factors in terms
of cosine
Z
Z
m
n
sin2k +1 x cosn x dx
sin x cos x dx =
=
Z
(sin2 )k x cosn sin x dx
=
Z
(1 − cos2 x)k cosn x sin x dx
Then substitute u = cos x .
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Strategy for evaluating
Z
sinm x cosn x dx :
If the powers of both sine and cosine are even, use the half-angle
identities
sin2 x =
1
(1 − cos 2x) ,
2
cos2 x =
1
(1 + cos 2x)
2
It is sometimes helpful to use the identity
sin x cos x =
1
sin 2x .
2
Example 4:
Evaluate
Z
tan6 x sec4 x dx .
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Solution:
Separating one sec2 x factor and using the identity
sec2 x = 1 + tan2 x , we obtain
Z
6
4
tan x sec x dx
=
Z
tan6 x sec2 x sec2 x dx
=
Z
tan6 x(1 + tan2 x) sec2 x dx
Substituting u = tan x , so du = sec2 xdx , then
Z
Z
Z
6
4
6
2
tan x sec x dx =
u (1 + u )du = (u 6 + u 8 )du
=
u7 u9
1
1
+
+ C = tan7 x + tan9 x + C
7
9
7
9
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Example 5:
Evaluate
Z
tan5 x sec7 x dx .
Solution:
Rewriting the integral and using the identity tan2 x = sec2 x − 1 , we
obtain
Z
Z
5
7
tan4 x sec6 x sec x tan x dx
tan x sec x dx =
=
Z
(sec2 x − 1)2 sec6 x sec x tan x dx.
Setting u = sec x , so du = sec x tan x dx , then
Z
Z
5
7
tan x sec x dx =
(u 2 − 1)2 u 6 du.
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Solution:
Thus
Z
Z
5
7
tan x sec x dx =
(u 4 − 2u 2 + 1)u 6 du
=
Z
=
u 11
u9 u7
−2 +
+C
11
9
7
=
1
2
1
sec11 x − sec9 x + sec7 x + C.
11
9
7
(u 10 − 2u 8 + u 6 )du
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Strategy for evaluating
Z
tanm x secn x dx
If the power of secant is even (n = 2k, k ≥ 2) , save a factor of
sec2 x and use sec2 x = 1 + tan2 x to express the remaining
factors in terms of tan x
Z
Z
m
n
tan x sec x dx =
tanm x sec2k x dx
=
Z
tanm x(sec2 x)k −1 sec2 x dx
=
Z
tanm x(1 + tan2 x)k −1 sec2 x dx
Then substitute u = tan x .
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Strategy for evaluating
Z
tanm x secn x dx
If the power of tangent is odd (m = 2k + 1) , save a factor of
sec x tan x and use tan2 x = sec2 x − 1 to express the remaining
factors in terms of sec x
Z
Z
tanm x secn x dx =
tan2k +1 x secn x dx
=
Z
(tan2 x)k secn−1 sec x tan x dx
=
Z
(sec2 x − 1)k secn−1 x sec x tan x dx
Then substitute u = sec x .
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Example 6:
Evaluate the indefinite integral
Z
sec x dx .
Solution:
First, we rewrite the secant term as follows
sec x =
1
cos x
cos x
=
.
=
2
cos x
cos x
1 − sin2 x
Next we use the algebraic identity
1
1
1
1
=
+
.
2 1+x
1−x
1 − x2
then
2 cos x
2
1 − sin x
=
cos x
cos x
+
.
1 − sin x
1 + sin x
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Solution:
Therefore Z
sec x dx =
=
1
2
Z cos x
cos x
+
1 + sin x
1 − sin x
dx
1
[ln |1 + sin x| − ln |1 − sin x|] + C
2
or
Z
sec x dx
1 1 + sin x 1 (1 + sin x)2 ln +
C
=
ln
+C
2
1 − sin x 2 1 − sin2 x (1 + sin x)2 1/2
1 + sin x +C
= ln + C = ln cos x cos2 x =
= ln |sec x + tan x| + C.
Z
Similarly, we can show that
csc x dx = − ln | csc x + cot x| + C .
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Example 7:
Evaluate the integral
Z
sin 3x cos 2x dx .
Solution:
Applying the trigonometry identity
sin A cos B =
we get
Z
sin 3x cos 2x dx
=
=
=
1
[sin(A − B) + sin(A + B)] ,
2
Z
1
[sin(3 − 2)x + sin(2 + 3)x] dx
2
Z
1
[sin x + sin(5x)] dx
2
1
1
− cos x − cos 5x + C.
2
5
Prof. Lahcen Laayouni
Differential and Integral Calculus
Integration Techniques
Trigonometric Integrals
Integration Techniques
Trigonometric identities:
For all A and B , we have
sin A sin B
=
sin A cos B
=
cos A cos B =
1
[cos(A − B) − cos(A + B)]
2
1
[sin(A − B) + sin(A + B)]
2
1
[cos(A − B) + cos(A + B)]
2
Prof. Lahcen Laayouni
Differential and Integral Calculus
Related documents