Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 7 Electrodynamics 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations 7.0 Introduction electrostatic E 1 0 E 0 magnetostatic B 0 B 0 J J 0 t ?0 t E ? t 0 E ? t ? B 0 B 0 J ? t 0 ? 0 0 E = conservation of charge static 7.0 (2) Maxwell’s equations: E 0 B 0 B Jd E t B 0 J 0 0 E t displacement current 7.0 (3) B t E da t B da t • E B da = E d Magnetic flux Induced electric field (force) induce E B (t ) BE 7.0 (4) • E B t B 0 0 E t Ba Ea induced by Ba Bb induced by Ea Eb induced by Bb Bc induced by Eb e.g. , E , B ~ e i ( kxwt ) wave E,B fields propagate in vacuum 7.0 (5) • E B t B 0 J 0 0 E t J ( x x0 , t ) Ba Ea Bb Eb A.C. current can generate electromagnetic wave antenna cyclotron mass free electron laser ….. 7.1 Electromotive Force 7.1.1 Ohm’s Law 7.1.2 Electromotive Force 7.1.3 Motional emf 7.1.1 Ohm’s Law • J Current density of the medium for 1 conductivity force per unit charge resistivity 0 for perfect conductors f E v B J ( E v B) • f J E Ohm’s Law for k v ( a formula based on experience) usually true but not in plasma; especially, hot. 7.1.1 (2) • Total current flowing from one electrode to the other V=I R Ohm’s Law (based on experience) Potential current resistance [ in ohm (Ω) ] Note : for steady current and uniform conductivity E 1 J 0 7.1.1 (3) Ex. 7.1 uniform I=? R=? uniform V sol: I JA EA A V L in series L1, L2 in parallel A1, A2 L R A R R1 R2 1 1 1 R R1 R2 7.1.1 (4) Ex. 7.3 Prove the field E is uniform J 0 V=0 A=const V=V 0 =const J nˆ 0 at the surfaces on the two ends E nˆ 0 i.e., V 0 n V0 z V ( z) L 2V 0 V0 E V zˆ L Laplace equation 7.1.1 (5) Ex. 7.2 V I ? ŝ E sˆ 2 0 s V a b : line charge density b E d ln ( ) 2 0 a E V b 1 2 L V I J da E da L V 2 0[ ln ] L ln ( b ) 0 0 a a ln ( b ) a R 2L 7.1.1 (6) The physics of Ohm’s Law and estimation of microscopic the charge will be accelerated by E before a collision time interval of the acceleration is mean free path 2 mfp mfp t min , v a thermal 1 typical case mfp at 2 2 for very strong field and long mean free path 7.1.1 (7) The net drift velocity caused by the directional acceleration is 1 a vave at 2 2vthermal nfq F = qE J n f q vave 2vthermal m mass of the molecule molecule density e charge free electrons per molecule nf q 2 J E 2mvthermal Joule heating law P VI I 2 R Power is dissipated by collision 7.1.2 Electromotive Force Produced by the charge accumulation due to Iin > Iout The current is the same all the way around the loop. force f f source E electromotive force f d E d 0 electrostatic fs d b ( E 0) b Vab E d f s d a a E V fs d f 0 E f s outside the source 7.1.3 motional emf B Fmag ,v qvB Fmag ,v f mag ,v vB q fmag ,v d vBh causes u 7.1.3 (2) f pull uB for equilibrium h f pull d (uB)( ) sin cos v sin u cos = vBh d sin d cos h Work is done by the pull force, not B . dx d d vBh Bh( ) ( Bhx) dt dt dt magnetic flux 7.1.3 (3) magnetic flux B da Bhx for the loop d dx Bh vBh dt dt d dt flux rule for motional emf 7.1.3 (4) • a general proof d (t dt ) (t ) ribbon da (v d )dt d B (v d ) B ( w d ) dt ( w B) d f mag d f mag d dt ribbon B da 7.1.3 (5) Ex. 7.4 =? a f mag ds 0 a wsB ds 0 wBa 2 2 wBa 2 I R 2R f mag v B ws ( wˆ B ) wsB sˆ 7.2 Electromagnetic Induction 7.2.1 Faraday’s Law 7.2.2 The Induced Electric Field 7.2.3 Inductance 7.2.4 Energy in Magnetic Fields 7.2.1 Faraday’s Law M. Faraday’s experiments loop moves Area , Induce I [v B ] B moves induce I [ E ] B induce I [ E ] d emf E d ( E ) da dt d Faraday’s Law (integral form) B da B da dt t B Faraday’s Law (differential form) E t 7.2.1 (2) A changing magnetic field induces an electric field. (a) v B, not E (b) & (c) induce E that causes I drive I Lenz’s law : Nature abhors a change in flux ( the induced current will flow in such a direction that the flux it produces tends to cancel the change. ) 7.2.1 (3) Ex. 7.5 r̂ ẑ loop Induced (t ) ? sol: K b M nˆ Mˆ B 0 M at center , spread out near the ends max 0 Ma 2 ˆ 7.2.1 (4) Ex. 7.6 Plug in, I induces B B induces I r Is Ir Plug in, why ring jump? B vB vB F B F F ring jump. 7.2.2 The Induced Electric Field B E t B 0 J E 0 ( 0) B 0 d E d dt Bd 0 I enc 7.2.2 (2) Ex. 7.7 induced E = ? = sol: d d 2 2 dB E d dt dt [s B(t )] s dt E 2s s dB ˆ E B E 2 dt 7.2.2 (3) Ex. 7.8. ẑ B B0 The charge ring is at rest B0 sol: d 2 dB E d dt a dt What happens? dN r F b ( d ) E zˆ (b Ed ) torque on d dB 2 dB ˆ E d zb ˆ [ a N dN zb ] b a dt dt 2 the angular momentum on the wheel 2 0 2 N dt b a d B a bB0 zˆ B 0 7.2.2 (4) Induced E ( s) ? ̂ ẑ I (t ) sol: 0 I B ˆ 2 s quasistatic B 7.2.2 (5) = d d 0 I E d dt B da dt 2 s ' ds ' E ( s0 ) E ( s ) 0 dI s 1 ds ' 2 dt s0 s ' 0 dI (ln s ln s0 ) 2 dt 0 dI E ( s) [ ln s K ] zˆ 2 dt Constant K( s , t ) s << c t t = I / (dI/dt) 7.2.3 Inductance 0 d 1 Rˆ B1 I1 I1 2 4 R mutual inductance 2 B1 da2 M 21I1 0 I1 d 1 ( A1 ) da2 A1 A1 d 0 I1 4 4 2 d 1 d R 2 R 7.2.3 (2) 0 M 21 4 d 1d 2 R Neumann formula The mutual inductance is a purely geometrical quantity M21 = M12 = M 1 = M12 I2 1 = 2 if I1 = I2 7.2.3 (3) n2 turns per unit length Ex. 7.10 1 2 sol: n1 turns per unit length I given assume I too. B1 is too complicated… 2 = ? Instead, assume I running through solenoid 2 I 2 I1 I B2 0n2 I 2 1 n1 1, per turm n1 a 2 B2 0 a 2 n1 n2 I 2 0 a 2 n1 n2 I M 0 a 2n1 n2 2 ( I 2 I1 I ) 2 ? M ? 7.2.3 (4) • I1 ( t ) 2 d 2 dI M 1 dt dt changing current I1 in loop1, induces current in loop2 • self inductance I (t ) LI self-inductance (or inductance ) Volt sec [ unit: henries (H) ] 1H 1 A • back emf dI L dt I will reduce it. 7.2.3 (5) Ex. 7.11 N turns b a L(self-inductance)=? sol: N B da 0 NI b1 N h a ds 2 s 0 N 2 Ih b ln ( ) 2 a 0 N 2 h b L ln ( ) 2 a 0 NI B 2s 7.2.3 (6) Ex. 7.12 sol: I (t ) ? dI 0 L IR dt I (t ) 0 R ke 0 R t L R general solution particular solution if I (0) 0 , k I (t ) 0 R 0 R R t (1 e L ) 0 R (1 e t t ) L t R time constant 7.2.4 Energy in Magnetic Fields In E.S. From the work done, we find the energy test charge q in E , But, B does no work. 1 0 2 We (V )dt E dt 2 2 WB = ? In back emf d dI d 1 2 WB I L I ( LI ) dt dt dt 2 1 2 1 2 1 (Wk mv ) WB LI I 2 2 2 B da ( A) da s WB 1 I 2 1 loop A d 2 s loop ( A I )d loop A d 7.2.4 (2) In volume 1 WB ( A J )dt 2 V 1 V A ( B)dt B ( A B) B ( A) A ( B) 2 0 2 B 1 1 2 B dt ( A B )dt V V 2 0 2 0 s ( A B ) da s 0 1 2 WB B dt all space 2 0 1 0 2 Welec (V )dt E dt 2 2 1 1 2 Wmag ( A J )dt B dt 2 2 0 7.2.4 (3) Ex. 7.13 WB ? (length ) sol: 0 I B ˆ a< s<b 2s B0 sa sb 0 I 2 WB dWB ( ) (2 sds) 20 2 s 0 I 2 b ds a s 1 2 4 WB L I 2 2 0 I b 0 b ln( ) L ln ( ) 4 a 2 a 1 7.3 Maxwell’s Equations 7.3.1 Electrodynamics before Maxwell 7.3.2 How to fix Ampere’s Law 7.3.3 Maxwell’s Equations 7.3.4 Magnetic Charge 7.3.5 Maxwell’s Equation in Matter 7.3.6 Boundary Conditions 7.3.1 Electrodynamics before Maxwell E 0 (Gauss Law) B 0 (no name) B E t B 0 J but (Faraday’s Law) (Ampere’s Law) B ( E ) ( ) ( B ) 0 t t = ( B ) 0 ( J ) ? J 0 Ampere’s Law fails because 0 7.3.1 an other way to see that Ampere’s Law fails for nonsteady current loop 1 2 B d 0 I enc For loop 1, Ienc = 0 For loop 2, Ienc = I they are not the same. 7.3.2 How to fix Ampere’s Law continuity equations, charge conservation E J [ 0 E ] ( 0 ) t t t such that, Ampere’s law shall be changed to E B 0 J 0 0 t Jd displacement current A changing electric field induces a magnetic field. 7.3.2 = E B d a ( J ) d a 0 0 0 t E B d I da 0 enc 0 0 t loop 1 2 for the problem in 7.3.1 1 1 Q E between capacitors 0 0 A E 1 dQ 1 I t 0 A dt 0 A 1 loop1 B d 0 0 0 I 0 I 0 loop 2 B d 0 I 0 0 I 7.3.3 Maxwell’s equations E 0 B 0 B E t B 0 J 0 0 E t Gauss’s law Faraday’s law Ampere’s law with Maxwell’s correction Force law F q( E v B) continuity equation J t ( the continuity equation can be obtained from Maxwell’s equation ) 7.3.3 Since , J produce E 0 B 0 B E 0 t B 0 0 E 0 J t J (r , t ) B E E, B 7.3.4 Magnetic Charge Maxwell equations in free space ( i.e., e 0 , J e 0 ) E 0 B 0 B E 0 t B 0 0 E t With e and J e , the symmetry is broken. If there were m ,and J m . e B E J E 0 m t 0 E B 0 m B 0 J e 0 0 t m e Jm J and e t t symmetric EB B 0 0 E symmetric So far, there is no experimental evidence of magnetic monopole. 7.3.5 Maxwell’s Equation in Matter bound charge b P b P t t JP bound current Jb M J b 0 no corresponding polarization current b JP 0 t Q ( b da ) da t t P da J P da t dI surface charge b P 7.3.5 (2) f b f P J J f Jb J P J f M P t Gauss's law E 1 0 ( f P) or D f D 0E P Ampere’s law ( with Maxwell’s term ) B 0 ( J f M P) 0 0 E t t ( B 0 M ) 0 J f 0 ( 0 E P) t 1 H BM H J f D 0 t 7.3.5 (3) In terms of free charges and currents, Maxwell’s equations become B E D f t B 0 H J f D t D, H and E , B are mixed. displacement current one needs constitutive relations: D ( E , B ) and H ( E , B ) 7.3.5 (4) for linear dielectric. or P 0 xe E D E f E B 0 M xm H 0 (1 xe ) 1 0 (1 xm ) H B B E t E B J f t 7.3.6 Boundary Condition Maxwell’s equations in integral form s D da Q f ,enc s B da 0 Over any closed surface S d L E d dt s B da d L H d I fenc dt s D da D1, B1 D2 , B2 for any surface bounded by the S closed loop L 7.3.6 D1 a D2 a f a d E1 E2 B da 0 dt S 0 D1 D2 f = = E1 E2 0 1E1 2 E2 f B1 B2 0 H1 H 2 K f ( n̂ ) ( K f n̂ ) B1 1 2 B2 K f nˆ = 1 = 1 = = H1 H 2 K f nˆ