Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 7 Electrodynamics 7.0 Introduction 7.1 Ohm’s Law 7.2 Faraday’s Law 7.3 Maxwell’s Equations 7.0 Introduction electrostatic  1  E   0   E  0 magnetostatic   B  0     B  0 J = conservation of charge     J  0 t static  ?0 t 0      E  ?  E  ? t t  ?  B 0        B  0  J    ? t  ?  0 0 E  0 7.0 (2) Maxwell’s equations.    E  0   B  0    Jd B  E   t       B  0 J  0 0 E t displaceme nt current 7.0 (3) =   B •  E   t           E  d a   B  d a       B  da   t t   Magnetic flux E  d   Induced electric field (force)  B (t ) induce  E   BE 7.0 (4)   •  E    B t      B  0 0 E t  Ba   Ea induced by Ba   Bb induced by Ea   Eb induced by Bb   Bc induced by Eb   e.g. , E , B ~ e i ( kxwt ) E,B field propagate in vacuum 7.0 (5) •     E   B t       B  0 J  0 0 E t  J ( x  x0,t )  Ba  Eb  Ba  Eb A.C current can generate electromagnetic wave antenna cyclotron mass free electron laser ….. 7.1 Electromotive Force 7.1.1 Ohm’s Law 7.1.2 Electromotive Force 7.1.3 Motional emf 7.1.1 Ohm’s Law •  J    f Current density conductivity force per unit charge of the medium   1 for perfect conductors   resistivity  0  •     for f  E  v  B     J  (E  v  B) ( a formula based on experience) w   for >> v usually true J  E k but not in plasma Ohm’s Law 7.1.1 (2) • Total current flowing from one electrode to the other V=I R Ohm’s Law (based on experience) Potential current resistance [ in ohm (Ω) ] Note : for steady current and uniform conductivity  1   E   J  0  7.1.1 (3) Ex7.1 uniform  I=? R=? uniform V sol: V I  JA  EA  A L in series L1 , L 2 in parallel A1, A 2 L R A R  R1  R 2 1 1 1   R R1 R 2 7.1.1 (4)  Ex.7.3 Prove the field E is uniform    J  0 V=0 A=const V=V0  =const  J  nˆ  0 at the surfaces on the two ends   E  nˆ  0 i.e., V 0 n V0 z V ( z )  L  V0 E  V   zˆ L 2V  0 Laplace equation 7.1.1 (5) Ex. 7.2  V I ? ŝ  ŝ  : line ch arg e density 20s   b a V   b E  d   ln ( ) 20 a  E  V       b 1 I   J  da   E  da  L  V  20 [ ln ] L 0 0 a 2L ln ( b ) a  V R  ln ( b ) 2L a  E 7.1.1 (6) The physics of Ohm’s Law and estimation of microscropic   the charge will be accelerated by E before a collision time interval of the acceleration is mean free path 2 mfp    mfp t  min  ,  v a  thermal  1 typical case mfp  at 2 2 for very strong field and long mean free path 7.1.1 (7) The net drift velocity caused by the directional acceleration is 1 a vave  at  2 2v thermal    nfq  F = qE J  n f q v ave  2v thermal m mass of the molecule molecule density e charge free electrons per molecule  nfq 2  J E 2mv thermal  Joule heating law P  VI  I 2 R Power is dissipated by collision 7.1.2 Electromotive Force The current is the same all the way around the loop. force    f  f source  E electrostatic electromotive force      f  d    f s  d    E  d   0 (  E  0)   b  b    Vab    E  d    f s  d    f s  d   a a    fs  0 E  V f  0  E   f s outside the source Produced by the charge accumulation due to Iin > Iout 7.1.3 motional emf  B  Fmag ,v  qvB   Fmag ,v f mag ,v   vB q       f mag ,v  d   vBh cause u 7.1.3 (2) f pull  uB for equilibrium    h f pull  d   (uB)( ) sin  cos v sin   u cos  =  vBh   d sin   d cos h  Work is done by the pull force, not B .  dx d d   vBh  Bh ( )   (Bhx )    dt dt dt  magnetic flux 7.1.3 (3) magnetic flux      B  da  Bhx for the loop d dx   Bh   vBh   dt dt d    dt flux rule for motional emf 7.1.3 (4) • a general prove d  (t  dt )  (t )   ribbon     B  da ribbon    da  ( v  d )  dt       d   B  ( v  d )   B  ( w  d ) dt         ( w  B)  d     f mag  d     f mag   d dt 7.1.3 (5) Ex.7.4 =? a   0 f mag  ds a  0 wsB ds wBa 2  2  WBa 2 I  R 2R     f mag  v  B  ws( ŵ  B)  wsB ŝ 7.2 Electromagnetic Induction 7.2.1 Faraday’s Law 7.2.2 The Induced Electric Field 7.2.3 Inductance 7.2.4 Energy in Magnetic Fields 7.2.1 Faraday’s Law M. Faraday’s experiments  Area  loop moves     Induce I [ v  B]   B moves    induce I [ E ] B    induce I [ E ]    d    emf   E  d    (  E)  da dt d       B  da    B  da Faraday’s Law (integral form) dt t   B Faraday’s Law (differential form)  E   t 7.2.1 (2) A changing magnetic field induces an electric field.    (a)  v  B, not E  drive I  (b) & (c) induce E  that causes I Lenz’s law : Nature abhors a change in flux ( the induced current will flow in such a direction that the flux it produces tends to cancel the change. ) 7.2.1 (3) Ex.7.5 r̂ zˆ   loop Induced  (t ) ? sol:   K b  M  nˆ  Mˆ   B  0 M at center , spread out near the ends  max   0 Ma 2 ˆ 7.2.1 (4)   Plug in, I induces B Ex. 7.6   B induces Ir  Is  Ir Plug in , Why ring jump?  B     vB vB  F  B  F  F  ring jump. 7.2.2 The Induced Electric Field   B  E   t     B  0 J    E  0 (   0)  B  0   d  E  d    dt    B  d   0 I enc 7.2.2 (2) Ex. 7.7  induced E = ? = sol:    d d 2 2 dB  E  d    dt   dt [s B(t )]  s dt E  2s     s dB ˆ  E  B E 2 dt 7.2.2 (3) Ex. 7.8. ẑ    B  B0 The charge ring  is at rest  B0 sol: What happens?   d 2 dB  E  d    dt  a dt       torque on d  dN  r  F  b  (d) E  zˆ  (bEd)       2 dB 2 dB N   dN  zˆb  E  d   zˆb[a ]  ba dt dt the angular momentum on the wheel  2 0 2 N dt   b  a d B   a bB0 zˆ  B 0 7.2.2 (4)  Induced E ( s)  ? ˆ ẑ I( t ) sol:  B  0 I ˆ  2s guasistatic  B 7.2.2 (5) =   d   d 0 I  E  d    dt  B  da   dt  2s'    ds' E(s 0 )  E(s)  0 dI s 1  ds '  s0 2 dt s'  0 dI  (ln s  ln s 0 ) 2 dt  0 dI  E(s)  [ ln s  K] ẑ 2 dt  Constant K( s , t ) s << c  I dI dt 7.2.3 Inductance   0 d 1  Rˆ B1  I1   I1 2 4 R    2   B1  da2  M 21I1   mutual inductance   (  A1 )  da2     A1  d  2   0 I1 d 1    d 2   4 R    0 I1 d 1 A1   4 R 7.2.3 (2)    d   d 2  M 21  0   1 4 R Neumann formula The mutual inductance is a purely geometrical quantity M 21  M12  M 1   2 if I1  I 2 1  M12 I 2 7.2.3 (3) n2 turns per unit length Ex. 7.10 1 sol: 2 I given n1 turns per unit length assume I too. B1 is too complicated……….. 2  ? Instead, assume I running through solenoid 2 I 2  I1  I 1  n1  1,per turm  n1   a 2  B2 B2   0 n 2 I 2   0  a 2 n1 n 2  I 2   0  a 2 n1 n 2  I M  0  a 2 n1 n2   2  (I 2  I1  I) 2  ? M ? 7.2.3 (4) • I1 ( t ) 2   d 2 dI  M 1 dt dt changing current I1 in loop1, induces current in loop2 • self inductance I (t )   LI self-inductance (or inductance ) Volt  sec [ unit: henries (H) ] 1H  1 A • back emf dI   L I  will reduce it. dt 7.2.3 (5) Ex. 7.11 N turns b a L(self-inductance)=? sol:     N  B  da 0 NI b1 N h a ds 2 s  0 N 2 Ih b  ln ( ) 2 a 0 N 2h b L ln ( ) 2 a 0 NI B 2s 7.2.3 (6) Ex. 7.12 I( t )  ? sol: dI  0  L  IR dt I (t )  0 R 0 R R  t  ke L particular sol. general sol. if I(0)  0 , k   I (t )  0 R R  t 0 L (1  e ) R  0 R (1  e  t  ) L  R time cons tant 7.2.4 Energy in Magnetic Fields In E.S.  test charge q From the work done, we find the energy  1 0 2 E W  ( V  ) d   E d in , e   2 2  But , B does no work. WB  ? In back emf d dI d 1 WB   I  L I  ( LI 2 ) dt dt dt 2 1 2 1 1 2  WB  LI  I ( Wk  mv ) 2  2 2        sB  da  s(  A)  da  loop A  d        WB  1 I  A  d   1  (A  I )d  2 loop 2 loop 7.2.4 (2) In volume   1 WB  V ( A  J )  d  2 B         1   ( A  B)  B  (  A)  A  (  B)  A  (  B )d  V 2 0 2   B 1 1 2  B d    ( A  B )d   V V 2 0 2 0    ( A  B )  d a 0 s s 1 2  WB  B d  all space 2 0 1 0 2 Welec   (V )d   E d 2 2 1   1 2 Wmag   ( A  J )d  B d  2 2 0 7.2.4 (3) Ex. 7.13 WB  ? (length ) sol:  0 I B ˆ a< s<b 2s WB    dWB    0 I 2 b ds   a 4 s 0 I 2 b  ln( ) 4 a  B0 s <a s >b 0 I 2 ) (2sds ) 2 0 2s 1 ( 1 2  WB  L I 2  b  L  0 ln ( ) 2 a 7.3 Maxwell’s Equations 7.3.1 Electrodynamics before Maxwell 7.3.2 How to fix Ampere’s Law 7.3.3 Maxwell’s Equations 7.3.4 Magnetic Charge 7.3.5 Maxwell’s Equation in Matter 7.3.6 Boundary Conditions 7.3.1 Electrodynamics before Maxwell   E   0 B  0   B E   t     B  0 J but (Gauss Law ) (no name ) (Faraday' s Law ) (Ampere ' s Law )    B    (  E )    (  )   (  B )  0 t t =     (  B )   0 (  J ) ?  Ampere’s Law fails because   J  0 0 7.3.1 an other way to see that Ampere’s Law fails for nonsteady current loop 1 2   B  d  0 I enc for loop 1 , Ienc  0 for loop 2 , I enc  I they are not the same. 7.3.2 How to fix Ampere’s Law continuity equations, charge conservation      E  J     [ 0  E ]    ( 0 ) t t t such that, Ampere’s law shall be changed to    E   B  0 J  0 0 t J d displacement current A changing electric field induces a magnetic field 7.3.2 =    E    B  d a  (  J    )  d a 0 0   0 t    E  B  d    I     da 0 enc 0 0  t for the problem in 7.3.1 1 1 Q E    between capacitors 0 A  0 E 1 dQ 1   I t  0 A dt  0 A   1  loop1 B  d   0  0 0 I  0 I 0   loop 2 B  d   0 I  0  0 I 7.3.3 Maxwell’s equations    E  0   B  0 Gauss’s law   B  E   Faraday’s law t       B  0 J  0 0 E Ampere’s law with Maxwell’s correction t     Force law F  q(E  v  B)   continuity equation   J   t ( the continuity equation can be obtained from Maxwell’s equation ) 7.3.3    Since  , J produce E , B    E  0   B  0   B  E  0 t       B  0 0 E  0 J t   J (r , t )   B E 7.3.4 Magnetic Charge  Maxwell equations in free space ( i.e.,  e  0 , J e  0 )  E  0  B  0  Je With  e and If there were  m  e E  0    B  0  m   m  Jm   t   B E  0 symmetric t   EB        B  00 E B   0 0 E t , the symmetry is broken .  ,and J m .    B   E   0 J m  t symmetric    E   B  0 J e  0 0 t   e  Je   and t So far, there is no experimental evidence of magnetic monopole. 7.3.5 Maxwell’s Equation in Matter bound charge bound current   Jb    M b    P b P    t t  JP    J b  0  no correspond ing  polarization current  b   JP  0 t Q   ( b  da )    da t t  P    da  J P  da t dI  surface ch arg e b  P 7.3.5 (2)     f  b   f    P         J  J f  Jb  J P  J f    M  P t  1  Gauss ' s law   E  (  f    P) 0  or   D   f    D  0E  P Ampere’s law ( with Maxwell’s term )          B  0 ( J f    M  P)  0 0 E t t         ( B  0 M )  0 J f  0 ( 0 E  P) t  1       H BM  H  J f  D 0 t 7.3.5 (3) In terms of free charges and currents, Maxwell’s equations become   B    E    D   f t       B  0  H  J f  D t     D, H and E , B are mixed . displacement current       one needs constitutive relations : D(E, B) and H(E, B) 7.3.5 (4) for linear dielectric.   P   0 xe E or   D  E  f  E  0   B  0   M  xm H    0 (1  xe )  1    0 (1  xm ) H B    B  E   t    E   B   J f   t 7.3.6 Boundary Condition Maxwell’s equations in integral form   s D  da  Q fenc Over any closed surface S   s B  da  0   d   L E  d    dt sB  da   d   L H  d   Ifenc  dt sD  da   D1 , B1   D 2 , B2 for any surface bounded by the S closed loop L 7.3.6     D1  a  D2  a   f a  H1  H 2  K f  nˆ = 0 =  B2 0 S 0 E1  E2  0 = B1 1E1   2 E2   f =  D1  D2   f     d   E1    E2      B  da dt         H1    H 2    K f  ( n̂   )    ( K f  n̂ ) B1  1 2  B2  K f  nˆ = 1 = 1