Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands S i Science and dA Applications li ti SULFUR Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida Instructor : Patrick Inglett [email protected] 6/22/2008 6/22/2008 6/22/2008 WBL P.W. Inglett 1 1 1 Sulfur Introduction S Forms, Distribution, Importance Basic processes of S Cycles Examples of current research Examples of applications 6/22/2008 Key points learned P.W. Inglett 2 1 Sulfur Learning Objectives Identifyy the forms of S in wetlands Understand the importance of S in wetlands/global processes Define the major S processes/transformations Understand the importance of microbial activity in S transformations Understand the potential regulators of S processes See the application of S cycle principles to understanding natural and man-made ecosystems 6/22/2008 P.W. Inglett 3 Sources of Sulfur • Sulfur is a ubiquitous element element. • Various sulfur compounds are present in: – – – – – – – 6/22/2008 The atmosphere Minerals Soils Plant tissue Animal tissue Microbial biomass Sediment P.W. Inglett 4 2 Reservoirs of Sulfur •Atmosphere •Lithosphere •Hydrosphere – Sea – Freshwater •Pedosphere – Soil S il – Soil Organic matter •Biosphere 6/22/2008 4.8 x 109 kg 24.3 x 1018 kg 1.3 x 1018 kg 3.0 x 1012 kg 2.6 2 6 x 1014 kg k 14 0.1 x 10 kg 8.0 x 1012 kg P.W. Inglett 5 General Forms of Sulfur in the Environment • Organic S in plant, animal, and microbial tissue (as essential i l components off amino i acids id and d proteins) i ) Methionine Cysteine H3C-S-CH2-CH2- HS-CH2Thioester O R1-C~S-R2 – Organic sulfur primarily in soil and sediments as humic material (naturally occurring soil and sediment organic matter) 6/22/2008 P.W. Inglett 6 3 General Forms of Sulfur in the Environment • Gaseous S compounds (SO2, H2S, DMSO, DMS) • Oxidized Inorganic S (sulfate, SO42-, is the primary compound). Seawater contains about 2,700 mg/L (ppm) of sulfate • Reduced Inorganic S (elemental sulfur, So, and sulfide, S2-) 6/22/2008 P.W. Inglett 7 General Forms of Sulfur in the Environment • Minerals Galena (PbS2) Gypsum (CaSO4) Jarosite(Fe2S) Barite (BaSO4) Pyrite (FeS2) • Fossil F il Fuels F l – Petroleum (0.1-10%) – Coal (1-20%) 6/22/2008 P.W. Inglett 8 4 Oxidation states of selected sulfur compounds • • • • • • 6/22/2008 Organic S (R-SH) Sulfide (S2-) Elemental S (S0) Sulfur dioxide (SO2) Sulfite (SO3-2) Sulfate (SO42-) -2 -2 0 +4 +4 +6 P.W. Inglett 9 Global Sulfur Cycle 6/22/2008 P.W. Inglett 10 5 Sulfur Cycling Processes 1. Dissimilatory sulfate reduction 2. Assimilatory sulfate reduction 3. Desulfurylation 4. Sulfide oxidation 5. Sulfur oxidation 6. Dissimilatory So reduction 6/22/2008 P.W. Inglett 11 Sulfur Cycle So 4 5 SH groups 2 Aerobic SO4 of protein 2- Anaerobic S2- 1 2 Anaerobic Aerobic 3 3 SH groups 5 of protein 4 6 So 6/22/2008 P.W. Inglett 12 6 Distribution of sulfur in soils Organic sulfur [93%] – Carbon-bonded sulfur (cysteine and methionine) 41% – Non-carbon-bonded sulfur (ester sulfates) 52% Inorganic sulfur [7%] – Adsorbed + soluble sulfates 6% – Inorganic compounds less oxidized than sulfates and reduced sulfur compounds (e.g. sulfides) 1% 6/22/2008 P.W. Inglett 13 Organic Sulfur Forms 20 Freshwater Sulfur, g/kg S 15 10 Brackish Salt 5 0 Ester C-S Total Organic Geochemistry vol. 18, no. 4, pp. 489-500, 1992 6/22/2008 P.W. Inglett 14 7 Inorganic Sulfur Forms 4 400 Freshwater 3 Brackish 2 200 Salt 1 100 Sulfur, g/kg S Su ulfur, mg/kg 300 0 0 FeS So FeS2 HCl Krairapanond et al. 1992. Organic Geochemistry 18: 489-500. 6/22/2008 P.W. Inglett 15 Organic S Hydrolysis R-S S-H H2 + H2O Thiol 6/22/2008 R-OH R OH + H2S Sulfohydrolase P.W. Inglett 16 8 Sulfur – Organism Groups Assimilatory Sulfate Reduction • Bacteria, Bacteria fungi fungi, algae, algae and plants Dissimilatory Sulfate Reduction • Hetrerotrophs Desulfovibrio, Desulfotomaculum, Desulfobacter, Desulfuromonas Sulfide Oxidation • Phototrophs: Chlorobium, Chromatium • Chemolithoautotrophs: Thiobacillus, Beggiatoa 6/22/2008 P.W. Inglett 17 Sulfate Reducing Bacteria: SRB (habitats) Desulfovibrio - found in water-logged soils. Desulfotomaculum - spoilage of canned foods. Desulfomonas - found in intestines. Archaeglobus - a thermophilic Archea whose optimal growth temperature is 83oC. C 6/22/2008 P.W. Inglett 18 9 6/22/2008 P.W. Inglett 19 Sulfate Reduction Deposition SO42Tidal Exchange SO42AEROBIC SO42- Reduction S2- Reduction SO42- So Microbial Biomass-S 6/22/2008 P.W. Inglett Adsorbed 2 SO42- ANAEROBIC 20 10 Glucose Oxidation kJ/mol Glucose Oxidation – Reduction Reaction C6H12O6 + 6O2 = 6CO2 + 6H2O 2,880 5C6H12O6 + 24NO3- + 24H+ = 30CO2 + 12N2 +42H2O 2, 712 C6H12O6 + 12MnO2 + 24H+ = 6CO2 + 12Mn2+ + 18H2O 1,920 C6H12O6 + 24Fe(OH)3 + 48H+ = 6CO2 + 24 Fe2+ +66H2O 432 C6H12O6 + 3SO42- = 6CO2 + 3S2- + 6H2O 6/22/2008 381 P.W. Inglett 21 Oxygen EquivalentsEnergy Yield from Glucose % of Ae erobic Energy Yield 120 100 80 60 40 20 0 O2 6/22/2008 NO3MnO2 Fe(OH)3 Electron Acceptors P.W. Inglett SO4222 11 Oxidation-Reduction SO42CO2 Mn4+ S2- CH4 -200 Fe3+ -100 0 Mn2+ NO3- Fe2+ +100 +200 O2 H2O N2 +300 +400 Redox Potential, mV (at pH 7) 6/22/2008 P.W. Inglett 23 Sequential Reduction of Electron Acceptors 6/22/2008 P.W. Inglett 24 12 Redox Zones With Depth WATER D Depth SOIL Oxygen Reduction Zone Eh = > 300 mV I II Nitrate Reduction Zone Mn4+ Reduction Zone Eh = 100 to 300 mV III Fe3+ Reduction Zone Eh = -100 to 100 mV IV Sulfate Reduction Zone Eh = -200 to -100 mV V Methanogenesis Eh = < -200 mV 6/22/2008 Aerobic Facultative Anaerobic P.W. Inglett 25 Redox Potential and pH 1000 Eh [mV] 800 600 400 200 0 -200 -400 -600 6/22/2008 0 2 4 pH P.W. Inglett 6 8 10 12 Baas Becking et al. 26 13 Microbial Activity [Site: Water Conservation 2A] y = 0.33x + 1.3 r2 = 0.88; 0 88; n = 24 50 [mg kg-1 hour-1] Sulfate e reducing conditions 60 40 30 20 10 0 10 0 20 30 40 50 60 Aerobic [mg kg-1 hour-1] 6/22/2008 P.W. Inglett 27 Sulfate Respiration Detrital Matter Complex Polymers Enzyme Hydrolysis Monomers Sugars, Amino Acids F tt Acids Fatty A id Cellulose, Hemicellulose, Proteins, Lipids, Waxes, Lignin Uptake Glucose Glycolysis Oxidative phosphorylation Pyruvate TCA Cycle Products: CO2, H2O, S2-, Nutrients CO2 Substrate level phosphorylation Acetate SO42- + e- Uptake Lactate Substrate level phosphorylation Organic Acids [acetate, propionate, butyrate, lactate, alcohols, H2, and CO2] ATP [Sulfate Reducing Bacterial Cell] 6/22/2008 P.W. Inglett [Fermenting Bacterial Cell] 28 14 Electron donors used during sulfate reduction • SRB lack enzymes necessary for complex carbon assimilation 6/22/2008 P.W. Inglett 29 Electron donors used during sulfate reduction 6/22/2008 P.W. Inglett 30 15 Decreasing energy yield 6/22/2008 P.W. Inglett 31 Electron Donors Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749. 6/22/2008 P.W. Inglett 32 16 Sulfate Reduction Rates Activity [[nmol/g g per p day] y] Low carbon wetland 23 Peaty wetland 130 Oligotrophic lake 707 Eutrophic lake 1,224 Marine and salt-marsh 6/22/2008 744-24,000 P.W. Inglett 33 Salt Marshes Respiration [g C/m2 year] Sapelo Island Sippewissett Sapelo Island [GA] [MA] (199 ) (1997) Aerobic respiration Denitrification Mn and Fe reduction Sulfate reduction Methanogenesis S Respiration 6/22/2008 390 10 ND 850 40 ~65% P.W. Inglett 390 3 ND 1,800 1-8 18 ~82% 2,000 ~69-87% 34 17 Sulfate Respiration Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749. 6/22/2008 P.W. Inglett 35 Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749. 6/22/2008 P.W. Inglett 36 18 Seasonal Effects Jorgensen, 1977. Marine Biology 41:7-17. 6/22/2008 P.W. Inglett 37 Seasonal Effects Spartina alterniflora marsh Great Sippewissett Marsh Moles SO42- m-2 d-1 M 05 0.5 0.4 0.3 0.2 0.1 0.0 J F M A M J J A S O N D Months Howarth and Giblin, 1983. Limnol and Oceanogr, 28:70-82. 6/22/2008 P.W. Inglett 38 19 Seasonal Effects Spartina alterniflora marsh 05 0.5 Moles O2 m-2 d-1 M Moles SO42- m-2 d-1 M 0.03 0.4 0.3 0.2 0.1 0.02 0.01 0.0 -5 0 5 10 15 20 25 30 Temp (C) -5 0 5 10 15 20 25 30 Temp (C) Howarth and Teal. 1979. Limnol and Oceanogr, 24: 999-1013. 6/22/2008 P.W. Inglett 39 Regulators of Sulfate Reduction • P Presence off electron l t acceptor t with ith higher hi h reduction potentials • Oxygen is toxic to sulfate reducers • Sulfate concentration – Freshwater (< 0.1 mM) – Marine (20-30 mM) • Substrate/Electron Donor • Temperature • Microbial populations 6/22/2008 P.W. Inglett 40 20 Decreasing energy yield 6/22/2008 P.W. Inglett 41 Anaerobic Sludge Reactor (FISH) Sulfidogenic aggregate Sulfidogenic/Methanogenic aggregate Archeal Probe SRB Probe Appl Environ Microbiol. 1999 October; 65(10): 4618–4629. 6/22/2008 P.W. Inglett 42 21 Competition With Methanogens X X X X 6/22/2008 P.W. Inglett 43 Sulfate Reducers vs Methanogens Sulfate reducers Vmax Vmax Methanogens V = [Vmax S]/Km + S Km Km [Substrate] 6/22/2008 P.W. Inglett 44 22 Sulfate Reduction Typical Lake Sediments mM SO42- 20 SO42- 0.4 10 mM CH4 0.6 CH4 0.2 20 0 40 60 80 100 Days from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell. 6/22/2008 P.W. Inglett 45 Sulfate Reduction Typical Lake Sediments mM SO42- mM SO420.1 0.2 20 10 0 12 8 2 SO42- SO42- 0.5 1.0 0 m cm 4 4 CH4 8 12 2.0 1 2 mM CH4 Freshwater 6/22/2008 CH4 1.5 0.5 1.0 mM CH4 Marine from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell. P.W. Inglett 46 23 Sulfate Reduction Cattail Marsh – Sunnyhill Farm Wetland CH4 (mg L-1) 0 5 10 15 10 W t Water 0 Depth (cm) Soil CH4 -10 SO42- -20 -30 0 20 40 60 80 100 SO42- (mg L-1) 6/22/2008 P.W. Inglett 47 Sulfate Reduction Iversen and Jorgensen. 1985. Limnol Oceanogr, 30: 944-955. 6/22/2008 P.W. Inglett 48 24 Sulfur Emissions H2S DMS Mineralization Org-S H2S DMS Mineralization O S Org-S AEROBIC Reduction 2 S2- Reduction So 2 SO42- ANAEROBIC 6/22/2008 P.W. Inglett 49 Gaseous S Emissions 6/22/2008 P.W. Inglett 50 25 Gaseous Speciation DeLaune et al. 2001 SALT BRACKISH FRESH CO-S H 2S H3C-S-CH3 ug S m-2 hr-1 6/22/2008 P.W. Inglett 51 Sulfide Formation H2S DMS Mineralization Org-S H2S DMS Mineralization O S Org-S AEROBIC Reduction 2 S2- Reduction So 2 SO42- ANAEROBIC 6/22/2008 P.W. Inglett 52 26 Sulfide Speciation 6/22/2008 P.W. Inglett 53 Problems With Hydrogen Sulfide • Malodorous (rotten egg smell) • Acidic (corrosion/fouling) • Toxic (reactive with metalloenzyme systems) 6/22/2008 P.W. Inglett 54 27 Sulfide Toxicity Tall vs. Short Spartina alterniflora Short Form Tall Form 6/22/2008 P.W. Inglett 55 6/22/2008 P.W. Inglett 56 28 Tall vs. Short Spartina alterniflora Sapelo Island Marsh Tall Creek Short Kostka et al., 2002. Biogeochemistry 60:49-76. P.W. Inglett 57 6/22/2008 Sulfide Toxicity Tall vs. Short Spartina alterniflora NH4+ Uptake Lower Vmax Higher Vmax Higher Km Lower Km MHT MLT Inc. NH4+, S2-, and Salt Concentrations Inc. Flood Frequency, Pore Water Turnover 6/22/2008 P.W. Inglett 58 29 Sulfide Precipitation AEROBIC Reduction 2 S2- Reduction So 2 SO42- Me+-S FeS2 6/22/2008 P.W. Inglett ANAEROBIC 59 Iron and Sulfide Interactions 2F OOH + H2S = So + 2Fe 2FeOOH 2F 2+ + 4OHFe2+ + H2S = FeS + 2H+ FeS + So = FeS2 Acid Volatile S (AVS) 6/22/2008 Chromium Reducible S (CRS) P.W. Inglett 60 30 Pyrite Framboids 6/22/2008 P.W. Inglett 61 Pyrite Formation Fe Oxides Monosulfides (AVS) FeS ΣH2S S0 Intermediate Redox S FeS2 Pyrite (CRS) Sulfate Reduction 6/22/2008 P.W. Inglett 62 31 Pyrite Formation Sapelo Island Marsh Solid--Fe Solid AVS CRS Creek Tall Short Kostka et al., 2002. Biogeochemistry 60:49-76. 6/22/2008 P.W. Inglett 63 ZnS 6/22/2008 P.W. Inglett 64 32 Metal Sulfide Solubility% Uptake of added 35S Uptake by Rice Plant 5 Na2S 4 3 2 MnS FeS ZnS 1 0 0 10 10-10 10-20 C S CuS 10-30 H S HgS 10-40 10-50 Solubility Product (Ksp) 6/22/2008 P.W. Inglett Engler and Patrick, 1981 65 Metal Sulfide Solubility Yu et al. 2001. Wat Res. 35:4086-4094. 6/22/2008 P.W. Inglett 66 33 Sulfur Oxidation Tidal Exchange SO42H2S DMS Oxidation Oxidation So SO42- AEROBIC Reduction 2 S2- So ANAEROBIC 6/22/2008 P.W. Inglett 67 Sulfide Oxidation 2H2S + O2 = 2So + 2H2O -204 204 kJ/ kJ/reaction ti 2So + 3O2 + 2H2O = 2SO42- + 4H+ -583 kJ/reaction H2S + 2O2 = SO42- + 2H+ -786 86 kJ/reaction J/ eact o H2S 6/22/2008 So SO32P.W. Inglett SO4268 34 Sulfur Cycling Cyanobacterial Mat Sediments 6/22/2008 P.W. Inglett 69 Sulfur Cycling Cyanobacterial Mat Sediments Surface Aphanothece Diatoms 6/22/2008 Green Layer Phormidium, Lyngbya P.W. Inglett Red Layer Chromatium salexigens Thiocapsa halophila. 70 35 Oxidation-Reduction Soil-floodwater Interface O2 Floodwater Aerobic soil SO42- H2S + O2 SO42- H2S Anaerobic soil 6/22/2008 P.W. Inglett 71 Sulfur Cycling Salt Marsh Surface Sediments 6/22/2008 P.W. Inglett 72 36 Oxidation-Reduction Root- Soil Interface AEROBIC ANAEROBIC 6/22/2008 P.W. Inglett 73 Oxidation-Reduction Infaunal Burrows Uca spp. 6/22/2008 P.W. Inglett 74 37 Oxidation-Reduction Infaunal Burrows ca. 12” Deep 6/22/2008 P.W. Inglett 75 6/22/2008 P.W. Inglett 76 38 Sulfur Cycle Rates = mmol/m2 day from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell. 6/22/2008 P.W. Inglett 77 Pyrite Oxidation FeS2 + 3.5O2 + H2O = Fe2+ + 2SO42- + 2H+ Fe2+ + 0.25O2 + H+ = Fe3+ + 0.5H2O (1) FeS2 + 3.75O2 + 0.5H2O = Fe3+ + 2SO42- + H+ (2) FeS2 + 14Fe3++ 8H2O = 15Fe2+ + 2SO42- + 16H+ O2 Fe2+ Slow (at low pH) Biological [Thiobacillus ferrooxidans] 6/22/2008 Fe3+ P.W. Inglett SO42- + H+ Fast Chemical/ Biological FeS2 78 39 Drainage Effects on Acid Sulfate Soils 6/22/2008 P.W. Inglett 79 Acid Sulfate Soils 6/22/2008 P.W. Inglett 80 40 Acid Mine Drainage 6/22/2008 P.W. Inglett 81 Sulfur Cycling in Wetlands Plant Biomass-S Deposition SO42Litterfall H2S DMS Tidal Exchange SO42Mineralization Org-S H2S DMS Mineralization S2- SO42- Org-S So Reduction 2 S2- Me+-S FeS2 6/22/2008 Oxidation Oxidation P.W. Inglett . SO42- Reduction 2 SO42- So Microbial Biomass-S AEROBIC Adsorbed SO42- ANAEROBIC 82 41 6/22/2008 P.W. Inglett 83 Hg Methylation Gilmore et al., 1992. Env Sci Tech. 26:2281-2287. 6/22/2008 P.W. Inglett 84 42 Hg Methylation Gilmore et al., 1992 6/22/2008 P.W. Inglett 85 Hg Methylation Desulfobacteriaceae Acetate Lactate Control King et al., 2000. Applied and Environmental Microbiology, June 2000, p. 2430-2437. 6/22/2008 P.W. Inglett 86 43 Hg Methylation 6/22/2008 P.W. Inglett Periphyton Delta 32S September 1996 87 Methylmercury in Floating Periphyton All Cycles 1995-1996 ug/k g > 6 4 2 0 Kendall et al., http://sofia.usgs.gov/publications/posters/ 6/22/2008 P.W. Inglett 88 44 Hg Methylation S2S0 Hg HgS0 ? HgS2 6/22/2008 H3C-Hg SRB SO42P.W. Inglett 89 Importance of Sulfur in Wetlands • • • • • • • Source of nutrient Source of energy Role in decomposition of organic matter Adverse effects of sulfide on plant growth Immobilization of toxic metals Contribution to acid development (oxidation) Role in methylation of Hg 6/22/2008 P.W. Inglett 90 45