Download Biogeochemistry of Wetlands Sulfur

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Institute of Food and Agricultural Sciences (IFAS)
Biogeochemistry of Wetlands
S i
Science
and
dA
Applications
li ti
SULFUR
Wetland Biogeochemistry Laboratory
Soil and Water Science Department
University of Florida
Instructor :
Patrick Inglett
[email protected]
6/22/2008
6/22/2008
6/22/2008
WBL
P.W. Inglett
1 1
1
Sulfur
‰ Introduction
‰
‰
S Forms, Distribution, Importance
Basic processes of S Cycles
‰ Examples
of current research
‰ Examples of applications
‰
6/22/2008
Key points learned
P.W. Inglett
2
1
Sulfur
Learning Objectives
‰ Identifyy the forms of S in wetlands
‰ Understand the importance of S in
wetlands/global processes
‰ Define the major S processes/transformations
‰ Understand the importance of microbial activity
in S transformations
‰ Understand the potential regulators of S
processes
‰ See the application of S cycle principles to
understanding natural and man-made
ecosystems
6/22/2008
P.W. Inglett
3
Sources of Sulfur
• Sulfur is a ubiquitous element
element.
• Various sulfur compounds are present in:
–
–
–
–
–
–
–
6/22/2008
The atmosphere
Minerals
Soils
Plant tissue
Animal tissue
Microbial biomass
Sediment
P.W. Inglett
4
2
Reservoirs of Sulfur
•Atmosphere
•Lithosphere
•Hydrosphere
– Sea
– Freshwater
•Pedosphere
– Soil
S il
– Soil Organic matter
•Biosphere
6/22/2008
4.8 x 109 kg
24.3 x 1018 kg
1.3 x 1018 kg
3.0 x 1012 kg
2.6
2
6 x 1014 kg
k
14
0.1 x 10 kg
8.0 x 1012 kg
P.W. Inglett
5
General Forms of Sulfur in the
Environment
• Organic S in plant, animal, and microbial tissue (as
essential
i l components off amino
i acids
id and
d proteins)
i )
Methionine
Cysteine
H3C-S-CH2-CH2-
HS-CH2Thioester
O
R1-C~S-R2
– Organic sulfur primarily in soil and sediments as humic
material (naturally occurring soil and sediment organic
matter)
6/22/2008
P.W. Inglett
6
3
General Forms of Sulfur in the
Environment
• Gaseous S compounds (SO2, H2S, DMSO, DMS)
• Oxidized Inorganic S (sulfate, SO42-, is the primary
compound).
Seawater contains about 2,700 mg/L (ppm) of sulfate
• Reduced Inorganic S (elemental sulfur, So, and
sulfide, S2-)
6/22/2008
P.W. Inglett
7
General Forms of Sulfur in the
Environment
• Minerals
Galena (PbS2)
Gypsum (CaSO4)
Jarosite(Fe2S)
Barite (BaSO4)
Pyrite (FeS2)
• Fossil
F
il Fuels
F l
– Petroleum (0.1-10%)
– Coal (1-20%)
6/22/2008
P.W. Inglett
8
4
Oxidation states of selected
sulfur compounds
•
•
•
•
•
•
6/22/2008
Organic S (R-SH)
Sulfide (S2-)
Elemental S (S0)
Sulfur dioxide (SO2)
Sulfite (SO3-2)
Sulfate (SO42-)
-2
-2
0
+4
+4
+6
P.W. Inglett
9
Global Sulfur Cycle
6/22/2008
P.W. Inglett
10
5
Sulfur Cycling Processes
1. Dissimilatory sulfate reduction
2. Assimilatory sulfate reduction
3. Desulfurylation
4. Sulfide oxidation
5. Sulfur oxidation
6. Dissimilatory So reduction
6/22/2008
P.W. Inglett
11
Sulfur Cycle
So
4
5
SH groups
2
Aerobic
SO4
of protein
2-
Anaerobic
S2-
1
2
Anaerobic
Aerobic
3
3
SH groups
5
of protein
4
6
So
6/22/2008
P.W. Inglett
12
6
Distribution of sulfur in soils
Organic sulfur [93%]
– Carbon-bonded sulfur (cysteine and methionine) 41%
– Non-carbon-bonded sulfur (ester sulfates) 52%
Inorganic sulfur [7%]
– Adsorbed + soluble sulfates 6%
– Inorganic compounds less oxidized than sulfates and
reduced sulfur compounds (e.g. sulfides) 1%
6/22/2008
P.W. Inglett
13
Organic Sulfur Forms
20
Freshwater
Sulfur, g/kg
S
15
10
Brackish
Salt
5
0
Ester
C-S
Total
Organic Geochemistry vol. 18, no. 4, pp. 489-500, 1992
6/22/2008
P.W. Inglett
14
7
Inorganic Sulfur Forms
4
400
Freshwater
3
Brackish
2
200
Salt
1
100
Sulfur, g/kg
S
Su
ulfur, mg/kg
300
0
0
FeS
So
FeS2
HCl
Krairapanond et al. 1992. Organic Geochemistry 18: 489-500.
6/22/2008
P.W. Inglett
15
Organic S Hydrolysis
R-S
S-H
H2 + H2O
Thiol
6/22/2008
R-OH
R
OH + H2S
Sulfohydrolase
P.W. Inglett
16
8
Sulfur – Organism Groups
Assimilatory Sulfate Reduction
• Bacteria,
Bacteria fungi
fungi, algae,
algae and plants
Dissimilatory Sulfate Reduction
• Hetrerotrophs
Desulfovibrio, Desulfotomaculum, Desulfobacter,
Desulfuromonas
Sulfide Oxidation
• Phototrophs: Chlorobium, Chromatium
• Chemolithoautotrophs: Thiobacillus, Beggiatoa
6/22/2008
P.W. Inglett
17
Sulfate Reducing Bacteria: SRB
(habitats)
Desulfovibrio - found in water-logged soils.
Desulfotomaculum - spoilage of canned foods.
Desulfomonas - found in intestines.
Archaeglobus - a thermophilic Archea whose optimal
growth temperature is 83oC.
C
6/22/2008
P.W. Inglett
18
9
6/22/2008
P.W. Inglett
19
Sulfate Reduction
Deposition
SO42Tidal Exchange
SO42AEROBIC
SO42-
Reduction
S2-
Reduction
SO42-
So
Microbial
Biomass-S
6/22/2008
P.W. Inglett
Adsorbed
2
SO42-
ANAEROBIC
20
10
Glucose Oxidation
kJ/mol
Glucose
Oxidation – Reduction Reaction
C6H12O6 + 6O2 = 6CO2 + 6H2O
2,880
5C6H12O6 + 24NO3- + 24H+ = 30CO2 + 12N2 +42H2O
2, 712
C6H12O6 + 12MnO2 + 24H+ = 6CO2 + 12Mn2+ + 18H2O
1,920
C6H12O6 + 24Fe(OH)3 + 48H+ = 6CO2 + 24 Fe2+ +66H2O
432
C6H12O6 + 3SO42- = 6CO2 + 3S2- + 6H2O
6/22/2008
381
P.W. Inglett
21
Oxygen EquivalentsEnergy Yield from Glucose
% of Ae
erobic Energy Yield
120
100
80
60
40
20
0
O2
6/22/2008
NO3MnO2
Fe(OH)3
Electron Acceptors
P.W. Inglett
SO4222
11
Oxidation-Reduction
SO42CO2
Mn4+
S2-
CH4
-200
Fe3+
-100
0
Mn2+
NO3-
Fe2+
+100
+200
O2
H2O
N2
+300 +400
Redox Potential, mV (at pH 7)
6/22/2008
P.W. Inglett
23
Sequential Reduction of
Electron Acceptors
6/22/2008
P.W. Inglett
24
12
Redox Zones With Depth
WATER
D
Depth
SOIL
Oxygen Reduction Zone
Eh = > 300 mV
I
II
Nitrate Reduction Zone
Mn4+ Reduction Zone
Eh = 100 to 300 mV
III
Fe3+ Reduction Zone
Eh = -100 to 100 mV
IV
Sulfate Reduction Zone
Eh = -200 to -100 mV
V
Methanogenesis
Eh = < -200 mV
6/22/2008
Aerobic
Facultative
Anaerobic
P.W. Inglett
25
Redox Potential and pH
1000
Eh [mV]
800
600
400
200
0
-200
-400
-600
6/22/2008
0
2
4
pH
P.W. Inglett
6
8
10 12
Baas Becking et al. 26
13
Microbial Activity
[Site: Water Conservation 2A]
y = 0.33x + 1.3
r2 = 0.88;
0 88; n = 24
50
[mg kg-1 hour-1]
Sulfate
e reducing conditions
60
40
30
20
10
0
10
0
20
30
40
50
60
Aerobic [mg kg-1 hour-1]
6/22/2008
P.W. Inglett
27
Sulfate Respiration
Detrital Matter
Complex Polymers
Enzyme
Hydrolysis
Monomers
Sugars, Amino Acids
F tt Acids
Fatty
A id
Cellulose, Hemicellulose,
Proteins, Lipids, Waxes, Lignin
Uptake
Glucose
Glycolysis
Oxidative phosphorylation
Pyruvate
TCA Cycle
Products:
CO2, H2O, S2-,
Nutrients
CO2
Substrate level
phosphorylation
Acetate
SO42- + e-
Uptake
Lactate
Substrate level phosphorylation
Organic Acids
[acetate, propionate, butyrate,
lactate, alcohols, H2, and CO2]
ATP
[Sulfate Reducing Bacterial Cell]
6/22/2008
P.W. Inglett
[Fermenting Bacterial Cell]
28
14
Electron donors used during
sulfate reduction
• SRB lack enzymes necessary for
complex carbon assimilation
6/22/2008
P.W. Inglett
29
Electron donors used during
sulfate reduction
6/22/2008
P.W. Inglett
30
15
Decreasing
energy
yield
6/22/2008
P.W. Inglett
31
Electron Donors
Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749.
6/22/2008
P.W. Inglett
32
16
Sulfate Reduction Rates
Activity
[[nmol/g
g per
p day]
y]
Low carbon wetland
23
Peaty wetland
130
Oligotrophic lake
707
Eutrophic lake
1,224
Marine and salt-marsh
6/22/2008
744-24,000
P.W. Inglett
33
Salt Marshes
Respiration [g C/m2 year]
Sapelo Island Sippewissett
Sapelo Island
[GA]
[MA]
(199 )
(1997)
Aerobic respiration
Denitrification
Mn and Fe reduction
Sulfate reduction
Methanogenesis
S Respiration
6/22/2008
390
10
ND
850
40
~65%
P.W. Inglett
390
3
ND
1,800
1-8
18
~82%
2,000
~69-87%
34
17
Sulfate Respiration
Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749.
6/22/2008
P.W. Inglett
35
Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749.
6/22/2008
P.W. Inglett
36
18
Seasonal Effects
Jorgensen, 1977. Marine Biology 41:7-17.
6/22/2008
P.W. Inglett
37
Seasonal Effects
Spartina alterniflora marsh
Great Sippewissett
Marsh
Moles SO42- m-2 d-1
M
05
0.5
0.4
0.3
0.2
0.1
0.0
J
F
M
A
M
J
J
A
S
O
N
D
Months
Howarth and Giblin, 1983. Limnol and Oceanogr, 28:70-82.
6/22/2008
P.W. Inglett
38
19
Seasonal Effects
Spartina alterniflora marsh
05
0.5
Moles O2 m-2 d-1
M
Moles SO42- m-2 d-1
M
0.03
0.4
0.3
0.2
0.1
0.02
0.01
0.0
-5
0
5
10
15
20
25
30
Temp (C)
-5
0
5
10
15
20
25 30
Temp (C)
Howarth and Teal. 1979. Limnol and Oceanogr, 24: 999-1013.
6/22/2008
P.W. Inglett
39
Regulators of Sulfate Reduction
• P
Presence off electron
l t
acceptor
t with
ith higher
hi h
reduction potentials
• Oxygen is toxic to sulfate reducers
• Sulfate concentration
– Freshwater (< 0.1 mM)
– Marine (20-30 mM)
• Substrate/Electron Donor
• Temperature
• Microbial populations
6/22/2008
P.W. Inglett
40
20
Decreasing
energy
yield
6/22/2008
P.W. Inglett
41
Anaerobic Sludge Reactor
(FISH)
Sulfidogenic aggregate
Sulfidogenic/Methanogenic aggregate
Archeal Probe
SRB Probe
Appl Environ Microbiol. 1999 October; 65(10): 4618–4629.
6/22/2008
P.W. Inglett
42
21
Competition With Methanogens
X
X
X
X
6/22/2008
P.W. Inglett
43
Sulfate Reducers vs Methanogens
Sulfate reducers
Vmax
Vmax
Methanogens
V = [Vmax S]/Km + S
Km
Km
[Substrate]
6/22/2008
P.W. Inglett
44
22
Sulfate Reduction
Typical Lake Sediments
mM SO42-
20
SO42-
0.4
10
mM CH4
0.6
CH4
0.2
20
0
40
60
80
100
Days
from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell.
6/22/2008
P.W. Inglett
45
Sulfate Reduction
Typical Lake Sediments
mM SO42-
mM SO420.1
0.2
20
10
0
12
8
2
SO42-
SO42-
0.5
1.0
0
m
cm
4
4
CH4
8
12
2.0
1
2
mM CH4
Freshwater
6/22/2008
CH4
1.5
0.5
1.0
mM CH4
Marine
from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell.
P.W. Inglett
46
23
Sulfate Reduction
Cattail Marsh – Sunnyhill Farm Wetland
CH4 (mg L-1)
0
5
10
15
10
W t
Water
0
Depth (cm)
Soil
CH4
-10
SO42-
-20
-30
0
20
40
60
80
100
SO42- (mg L-1)
6/22/2008
P.W. Inglett
47
Sulfate Reduction
Iversen and Jorgensen. 1985. Limnol Oceanogr, 30: 944-955.
6/22/2008
P.W. Inglett
48
24
Sulfur Emissions
H2S
DMS
Mineralization
Org-S
H2S
DMS
Mineralization
O S
Org-S
AEROBIC
Reduction
2
S2-
Reduction
So
2
SO42-
ANAEROBIC
6/22/2008
P.W. Inglett
49
Gaseous S Emissions
6/22/2008
P.W. Inglett
50
25
Gaseous Speciation
DeLaune et al. 2001
SALT
BRACKISH
FRESH
CO-S
H 2S
H3C-S-CH3
ug S m-2 hr-1
6/22/2008
P.W. Inglett
51
Sulfide Formation
H2S
DMS
Mineralization
Org-S
H2S
DMS
Mineralization
O S
Org-S
AEROBIC
Reduction
2
S2-
Reduction
So
2
SO42-
ANAEROBIC
6/22/2008
P.W. Inglett
52
26
Sulfide Speciation
6/22/2008
P.W. Inglett
53
Problems With Hydrogen Sulfide
• Malodorous (rotten egg smell)
• Acidic (corrosion/fouling)
• Toxic (reactive with
metalloenzyme systems)
6/22/2008
P.W. Inglett
54
27
Sulfide Toxicity
Tall vs. Short Spartina alterniflora
Short Form
Tall Form
6/22/2008
P.W. Inglett
55
6/22/2008
P.W. Inglett
56
28
Tall vs. Short Spartina alterniflora
Sapelo Island Marsh
Tall
Creek
Short
Kostka et al., 2002. Biogeochemistry 60:49-76.
P.W. Inglett
57
6/22/2008
Sulfide Toxicity
Tall vs. Short Spartina alterniflora
NH4+ Uptake
Lower Vmax
Higher Vmax
Higher Km
Lower Km
MHT
MLT
Inc. NH4+, S2-, and Salt Concentrations
Inc. Flood Frequency, Pore Water Turnover
6/22/2008
P.W. Inglett
58
29
Sulfide Precipitation
AEROBIC
Reduction
2
S2-
Reduction
So
2
SO42-
Me+-S
FeS2
6/22/2008
P.W. Inglett
ANAEROBIC
59
Iron and Sulfide Interactions
2F OOH + H2S = So + 2Fe
2FeOOH
2F 2+ + 4OHFe2+ + H2S = FeS + 2H+
FeS + So = FeS2
Acid Volatile S
(AVS)
6/22/2008
Chromium Reducible S
(CRS)
P.W. Inglett
60
30
Pyrite Framboids
6/22/2008
P.W. Inglett
61
Pyrite Formation
Fe
Oxides
Monosulfides
(AVS)
FeS
ΣH2S
S0
Intermediate
Redox S
FeS2
Pyrite (CRS)
Sulfate
Reduction
6/22/2008
P.W. Inglett
62
31
Pyrite Formation
Sapelo Island Marsh
Solid--Fe
Solid
AVS
CRS
Creek
Tall
Short
Kostka et al., 2002. Biogeochemistry 60:49-76.
6/22/2008
P.W. Inglett
63
ZnS
6/22/2008
P.W. Inglett
64
32
Metal Sulfide Solubility% Uptake of added 35S
Uptake by Rice Plant
5
Na2S
4
3
2
MnS
FeS ZnS
1
0 0
10
10-10
10-20
C S
CuS
10-30
H S
HgS
10-40
10-50
Solubility Product (Ksp)
6/22/2008
P.W. Inglett
Engler and Patrick, 1981
65
Metal Sulfide Solubility
Yu et al. 2001. Wat Res. 35:4086-4094.
6/22/2008
P.W. Inglett
66
33
Sulfur Oxidation
Tidal Exchange
SO42H2S
DMS
Oxidation
Oxidation
So
SO42-
AEROBIC
Reduction
2
S2-
So
ANAEROBIC
6/22/2008
P.W. Inglett
67
Sulfide Oxidation
2H2S + O2 = 2So + 2H2O
-204
204 kJ/
kJ/reaction
ti
2So + 3O2 + 2H2O = 2SO42- + 4H+
-583 kJ/reaction
H2S + 2O2 = SO42- + 2H+
-786
86 kJ/reaction
J/ eact o
H2S
6/22/2008
So
SO32P.W. Inglett
SO4268
34
Sulfur Cycling
Cyanobacterial Mat Sediments
6/22/2008
P.W. Inglett
69
Sulfur Cycling
Cyanobacterial Mat Sediments
Surface
Aphanothece
Diatoms
6/22/2008
Green Layer
Phormidium,
Lyngbya
P.W. Inglett
Red Layer
Chromatium salexigens
Thiocapsa halophila.
70
35
Oxidation-Reduction
Soil-floodwater Interface
O2
Floodwater
Aerobic soil
SO42-
H2S + O2
SO42-
H2S
Anaerobic soil
6/22/2008
P.W. Inglett
71
Sulfur Cycling
Salt Marsh Surface Sediments
6/22/2008
P.W. Inglett
72
36
Oxidation-Reduction
Root- Soil Interface
AEROBIC
ANAEROBIC
6/22/2008
P.W. Inglett
73
Oxidation-Reduction
Infaunal Burrows
Uca spp.
6/22/2008
P.W. Inglett
74
37
Oxidation-Reduction
Infaunal Burrows
ca. 12” Deep
6/22/2008
P.W. Inglett
75
6/22/2008
P.W. Inglett
76
38
Sulfur Cycle
Rates = mmol/m2 day
from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell.
6/22/2008
P.W. Inglett
77
Pyrite Oxidation
FeS2 + 3.5O2 + H2O = Fe2+ + 2SO42- + 2H+
Fe2+ + 0.25O2 + H+ = Fe3+ + 0.5H2O
(1) FeS2 + 3.75O2 + 0.5H2O = Fe3+ + 2SO42- + H+
(2) FeS2 + 14Fe3++ 8H2O = 15Fe2+ + 2SO42- + 16H+
O2
Fe2+
Slow (at low pH)
Biological
[Thiobacillus ferrooxidans]
6/22/2008
Fe3+
P.W. Inglett
SO42- + H+
Fast
Chemical/
Biological
FeS2
78
39
Drainage Effects on Acid Sulfate Soils
6/22/2008
P.W. Inglett
79
Acid Sulfate Soils
6/22/2008
P.W. Inglett
80
40
Acid Mine
Drainage
6/22/2008
P.W. Inglett
81
Sulfur Cycling in Wetlands
Plant Biomass-S
Deposition
SO42Litterfall
H2S
DMS
Tidal Exchange
SO42Mineralization
Org-S
H2S
DMS
Mineralization
S2-
SO42-
Org-S
So
Reduction
2
S2-
Me+-S
FeS2
6/22/2008
Oxidation
Oxidation
P.W. Inglett
.
SO42-
Reduction
2
SO42-
So
Microbial
Biomass-S
AEROBIC
Adsorbed
SO42-
ANAEROBIC
82
41
6/22/2008
P.W. Inglett
83
Hg Methylation
Gilmore et al., 1992. Env Sci Tech. 26:2281-2287.
6/22/2008
P.W. Inglett
84
42
Hg Methylation
Gilmore et al., 1992
6/22/2008
P.W. Inglett
85
Hg Methylation
Desulfobacteriaceae
Acetate
Lactate
Control
King et al., 2000. Applied and Environmental Microbiology, June 2000, p. 2430-2437.
6/22/2008
P.W. Inglett
86
43
Hg Methylation
6/22/2008
P.W. Inglett
Periphyton Delta 32S
September 1996
87
Methylmercury in Floating
Periphyton
All Cycles 1995-1996
ug/k
g
>
6
4
2
0
Kendall et al., http://sofia.usgs.gov/publications/posters/
6/22/2008
P.W. Inglett
88
44
Hg Methylation
S2S0
Hg
HgS0
?
HgS2
6/22/2008
H3C-Hg
SRB
SO42P.W. Inglett
89
Importance of Sulfur in Wetlands
•
•
•
•
•
•
•
Source of nutrient
Source of energy
Role in decomposition of organic matter
Adverse effects of sulfide on plant growth
Immobilization of toxic metals
Contribution to acid development (oxidation)
Role in methylation of Hg
6/22/2008
P.W. Inglett
90
45
Related documents