Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
L29 8.3 Powers and products of Trigonometric functions (三角函數的次數和乘積) Part I: For Sinx and Cosx Part II: Other trigonometric functions ∫e ax cos(bx)dx = ? 類似 ∫ e x cos( x)dx = ? By the way~定義數學的約定,定義是數學的起家,規定、準則。 § 8.3 Powers and products of Trigonometric functions PartⅠ: For sinx and cox Goal: ∫ sin x m cos n dx = ? caseⅠ: m or n is odd, say m=2k+1. Q:m 跟 n 什麼樣的狀況 substitution 用的上? A:m 跟 n 有一個是單數。 ∫ sin x 2k +1 n cos = dx ∫ sin x(1 − cos 2 x) k cos n dx cosx 的多項式 Let u=cosx, then du=-sinxdx -∫(u 的多項式)du=積得出來 caseⅡ: m and n are even. Using the following identities to reduce the power 1 2 sinxcosx= sin x cos x , sin2x= caseⅢ: ∫ sin(mx) cos(nx)dx , 1+ cos(2 x) 1 − cos(2 x) , cos2x= 2 2 ∫ sin(mx) sin(nx)dx , ∫ cos(mx) cos(nx)dx .(m≠n) sinAcosB=1/2[sin(A+B)+sin(A-B)] sinAsinB=1/2[cos(A-B)-cos(A+B)] cosAcosB=1/2[cos(A+B)+cos(A-B)] L29 8.3 Powers and products of Trigonometric functions (三角函數的次數和乘積) Part I: For Sinx and Cosx Part II: Other trigonometric functions eg. ∫ cos 1 ○ 2 dx = 1 + cos(2 x) x 1 = = + sin(2 x) + C 2 2 4 ∫ sin 2 ○ 2 x cos5 dx = = ∫ sin 2 x(1 − sin 2 ) 2 cos xdx = ∫ (sin 2 x − 2sin 4 x + sin 6 x) cos xdx = ∫ sin 3 ○ 2 1 3 2 1 sin x − sin 5 x + sin 7 x + C 3 5 7 x cos 2 dx = 1 1 1 − cos(4 x) 1 1 2 = dx = x − sin(4 x) + C ∫ [ 2 sin(2 x)] dx = ∫ 4 2 8 32 ∫ sin 4 ○ 5 xdx = = sin x(1 − cos 2 ) 2 dx ∫ sin 5 ○ 4 x cos 2 xdx = 1 − cos(2 x) 1 1 2 2 2 = ∫ 2 ⋅ [ 2 sin(2 x)] dx =8 ∫ sin (2 x) − cos(2 x) sin (2 x)dx = 1 1 − cos(4 x) 1 1 1 1 1 1 dx − ⋅ ⋅ sin 3 (2 x= ) x − sin(4 x) − sin 3 (2 x) + C ∫ 8 2 8 2 3 16 64 48 ∫ sin(5x) cos(4x)dx = 6 ○ 1 cos(9 x) cos x sin(9x) + sin( x)dx = − − +C ∫ 2 18 2 Remark: ∫ sin n ∫ sin n xdx , ∫ cos n xdx 2 n −1 n −1 n−2 xdx = ∫ sin ⋅ sin xdx =−sin cos x + (n − 1)∫ cos x ⋅ sin dx = − sin n −1 cos x + (n − 1) ∫ sin n − 2 dx − (n − 1) ∫ sin n dx ⇒ −1 n −1 (n − 1) sin cos x + sin n − 2 dx apply this equation for n-2. ∫ n n Ex:P415(2.8.16.27.29.33.34) L29 8.3 Powers and products of Trigonometric functions (三角函數的次數和乘積) Part I: For Sinx and Cosx Part II: Other trigonometric functions Part:Other trigometric functions ∫ tan (Ⅰ) n xdx , ( ∫ cot n xdx ) Q:能不能製造出 sec2x?A:抽出 tan2x 轉換(sec2x-1) tan dx ∫ tan ∫= n n−2 ∫ tan (sec 2= x − 1)dx n−2 sec 2 xdx − ∫ tan n − 2 xdx 重複一直作到次數為 1 或 0 eg. ∫ tan 6 dx tan 5 x = ∫ tan x(sec x − 1)dx= − ∫ sec 2 x(sec 2 x − 1) xdx 5 1 1 1 1 = tan 5 x − tan 3 x + ∫ (sec 2 x − 1) x = tan 5 x − tan 3 x + tan x − x + C 5 3 5 3 4 2 ∫ sec (Ⅱ) n xdx , ( ∫ csc n xdx ) Q:能不能製造出 secxtanx?A:不能,只能製造出 sec2xtan2x (substitution 不能用) If n is even, say n=2k ∫ sec 2k k −1 k −1 2 2 2 xdx = ∫ sec x(tan x + 1) dx =∫ (u + 1) du If n is odd, say n=2k+1 2k-1 2 Q:要拆成怎樣?A:sec x 和 sec x xdx ∫ sec ∫ sec = 2k +1 2k −1 2 x sec = dx sec 2k −1 x tan x − ∫ (2k − 1) sec 2 k − 2 x sec x tan x ⋅ tan xdx = sec 2k −1 x tan x − (2k − 1) ∫ sec 2 k +1 xdx + (2k − 1) ∫ sec 2 k −1 xdx ⇒ ∫ sec 2 k +1 xdx = 1 2k − 1 tan x sec 2 k −1 x + sec 2 k −1 dx ∫ 2k 2k