Download L29_8.3 Powers and products of Trigonometric functions(三角函數的

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
L29 8.3 Powers and products of Trigonometric functions (三角函數的次數和乘積)
Part I: For Sinx and Cosx
Part II: Other trigonometric functions
∫e
ax
cos(bx)dx = ? 類似 ∫ e x cos( x)dx = ?
By the way~定義數學的約定,定義是數學的起家,規定、準則。
§ 8.3 Powers and products of Trigonometric functions
PartⅠ: For sinx and cox
Goal:
∫ sin x
m
cos n dx = ?
caseⅠ: m or n is odd, say m=2k+1.
Q:m 跟 n 什麼樣的狀況 substitution 用的上?
A:m 跟 n 有一個是單數。
∫ sin x
2k +1
n
cos
=
dx
∫ sin x(1 − cos
2
x) k cos n dx cosx 的多項式
Let u=cosx, then du=-sinxdx
-∫(u 的多項式)du=積得出來
caseⅡ: m and n are even.
Using the following identities to reduce the power
1
2
sinxcosx= sin x cos x , sin2x=
caseⅢ: ∫ sin(mx) cos(nx)dx ,
1+ cos(2 x)
1 − cos(2 x)
, cos2x=
2
2
∫ sin(mx) sin(nx)dx , ∫ cos(mx) cos(nx)dx .(m≠n)
sinAcosB=1/2[sin(A+B)+sin(A-B)]
sinAsinB=1/2[cos(A-B)-cos(A+B)]
cosAcosB=1/2[cos(A+B)+cos(A-B)]
L29 8.3 Powers and products of Trigonometric functions (三角函數的次數和乘積)
Part I: For Sinx and Cosx
Part II: Other trigonometric functions
eg.
∫ cos
1
○
2
dx =
1 + cos(2 x) x 1
=
=
+ sin(2 x) + C
2
2 4
∫ sin
2
○
2
x cos5 dx =
= ∫ sin 2 x(1 − sin 2 ) 2 cos xdx = ∫ (sin 2 x − 2sin 4 x + sin 6 x) cos xdx =
∫ sin
3
○
2
1 3
2
1
sin x − sin 5 x + sin 7 x + C
3
5
7
x cos 2 dx =
1
1 1 − cos(4 x)
1
1
2
=
dx =
x − sin(4 x) + C
∫ [ 2 sin(2 x)] dx =
∫
4
2
8
32
∫ sin
4
○
5
xdx =
= sin x(1 − cos 2 ) 2 dx
∫ sin
5
○
4
x cos 2 xdx =
1 − cos(2 x) 1
1
2
2
2
=
∫ 2 ⋅ [ 2 sin(2 x)] dx =8 ∫ sin (2 x) − cos(2 x) sin (2 x)dx
=
1 1 − cos(4 x)
1 1 1
1
1
1
dx − ⋅ ⋅ sin 3 (2 x=
)
x − sin(4 x) − sin 3 (2 x) + C
∫
8
2
8 2 3
16
64
48
∫ sin(5x) cos(4x)dx =
6
○
1
cos(9 x) cos x
sin(9x) + sin( x)dx =
−
−
+C
∫
2
18
2
Remark:
∫ sin
n
∫ sin
n
xdx ,
∫ cos
n
xdx
2
n −1
n −1
n−2
xdx =
∫ sin ⋅ sin xdx =−sin cos x + (n − 1)∫ cos x ⋅ sin dx
=
− sin n −1 cos x + (n − 1) ∫ sin n − 2 dx − (n − 1) ∫ sin n dx
⇒
−1 n −1
(n − 1)
sin cos x +
sin n − 2 dx apply this equation for n-2.
∫
n
n
Ex:P415(2.8.16.27.29.33.34)
L29 8.3 Powers and products of Trigonometric functions (三角函數的次數和乘積)
Part I: For Sinx and Cosx
Part II: Other trigonometric functions
Part:Other trigometric functions
∫ tan
(Ⅰ)
n
xdx , ( ∫ cot n xdx )
Q:能不能製造出 sec2x?A:抽出 tan2x 轉換(sec2x-1)
tan dx ∫ tan
∫=
n
n−2
∫ tan
(sec 2=
x − 1)dx
n−2
sec 2 xdx − ∫ tan n − 2 xdx
重複一直作到次數為 1 或 0
eg.
∫ tan
6
dx
tan 5 x
= ∫ tan x(sec x − 1)dx=
− ∫ sec 2 x(sec 2 x − 1) xdx
5
1
1
1
1
= tan 5 x − tan 3 x + ∫ (sec 2 x − 1) x = tan 5 x − tan 3 x + tan x − x + C
5
3
5
3
4
2
∫ sec
(Ⅱ)
n
xdx , ( ∫ csc n xdx )
Q:能不能製造出 secxtanx?A:不能,只能製造出 sec2xtan2x (substitution 不能用)
If n is even, say n=2k
∫ sec
2k
k −1
k −1
2
2
2
xdx =
∫ sec x(tan x + 1) dx =∫ (u + 1) du
If n is odd, say n=2k+1
2k-1
2
Q:要拆成怎樣?A:sec x 和 sec x
xdx ∫ sec
∫ sec =
2k +1
2k −1
2
x sec
=
dx sec 2k −1 x tan x − ∫ (2k − 1) sec 2 k − 2 x sec x tan x ⋅ tan xdx
= sec 2k −1 x tan x − (2k − 1) ∫ sec 2 k +1 xdx + (2k − 1) ∫ sec 2 k −1 xdx
⇒ ∫ sec 2 k +1 xdx
=
1
2k − 1
tan x sec 2 k −1 x +
sec 2 k −1 dx
∫
2k
2k
Related documents