Download Integral Calculus Formula Sheet

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Integral Calculus Formula Sheet Derivative Rules: d
c   0 dx
d
 x n   nx n 1 dx
d
 sin x   cos x
dx
d
 sec x   sec x tan x
dx
d
 tan x   sec2 x dx
d
 cos x    sin x
dx
d
 csc x    csc x cot x
dx
d
 cot x    csc 2 x dx
d x
a   a x ln a

dx
d x
e   ex dx
d
d
cf  x    c f  x  
dx
dx
d
d
d
f  x   g  x    f  x     g  x  
dx
dx
dx
f  g   f   g  f  g 
f

g
  fg 
 f g
 
g2

d
f g x   f  g x  g  x 
dx
 



Properties of Integrals:  kf (u )du  k  f (u )du
  f (u )  g (u )du   f (u )du   g (u )du
a
b
 f ( x)dx  0  f ( x)dx    f ( x)dx a
c
a
b
a
a

b
f ave 
b
a
1
f ( x) dx b  a a
a

f ( x)dx  2 f ( x) dx if f(x) is even a
b
c
 f ( x)dx   f ( x)dx   f ( x)dx a
a

f ( x) dx  0 if f(x) is odd a
0
b
f (b )
a
f (a)
 g ( f ( x)) f ( x)dx  
 udv  uv   vdu g (u )du Integration Rules:  du  u  C
n 1
u
 u du  n  1  C
du
 u  ln u  C
u
u
 e du  e  C
n
1
 a du  ln a a
u
u
C  sin u du   cos u  C
 cos u du  sin u  C
 sec u du  tan u  C
 csc u   cot u  C
 csc u cot u du   csc u  C
 sec u tan u du  sec u  C 2
2
du
1
u
 arctan    C
2
a
u
a
du
u
 a 2  u 2  arcsin  a   C
u
1
du
 u u 2  a 2  a arc sec  a   C
a
2
Fundamental Theorem of Calculus: F ' x 
d x
f  t  dt  f  x  where f  t  is a continuous function on [a, x]. dx  a
 f  x  dx  F  b   F  a  , where F(x) is any antiderivative of f(x). b
a
Riemann Sums: n
 ca
i
i 1
n
a
i
i 1
b
n
 c  ai

i 1
 bi   ai   bi x  b  a i 1
i 1
n
  height of ith rectangle    width of ith rectangle 
i
i 1
Right Endpoint Rule:
n(n  1)
i

2
i 1
n
 i2 
n
i
i 1
3
i 1
n
1  n
i 1
n 
a
n
n
n
n
f ( x)dx  lim  f (a  ix)x
n
n
i 1
i 1
 f (a  ix)(x)   (
n(n  1)(2n  1)
6
 n( n  1) 


 2 
2
(b  a )
n
) f (a  i (b n a ) )
Left Endpoint Rule:
n

i 1
n
f (a  (i  1)x)(x)   ( (b na ) ) f (a  (i  1) (bn a ) )
i 1
Midpoint Rule:
n

f (a 
i 1

( i 1)  i
2

n
x)(x)   ( (b n a ) ) f (a 
i 1

( i 1)  i
2

(ba )
n
)
Net Change: b
b

Displacement: v ( x) dx 
Distance Traveled: v( x) dx a
a
t
t
0
0
s (t )  s (0)   v( x)dx Q (t )  Q (0)   Q( x)dx
Trig Formulas: sin x
1
sec x 
cos x
cos x
cos x
1
cos 2 ( x)  12 1  cos(2 x)  cot x 
csc x 
sin x
sin x
sin 2 ( x)  12 1  cos(2 x)  tan x 
cos(  x )  cos( x ) sin 2 ( x)  cos 2 ( x)  1
sin( x )   sin( x ) tan 2 ( x)  1  sec 2 ( x)
Geometry Fomulas: Area of a Square: A  s2 Area of a Triangle: A  12 bh Area of an Equilateral Trangle:
A
3
4
s2 Area of a Circle: A   r2 Area of a Rectangle: A  bh Areas and Volumes: Area in terms of y (horizontal rectangles): Area in terms of x (vertical rectangles): b
d
 (top  bottom)dx  (right  left )dy General Volumes by Slicing: Given: Base and shape of Cross‐sections Disk Method: For volumes of revolution laying on the axis with slices perpendicular to the axis a
c
b
V   A( x )dx if slices are vertical b
V     R ( x )  dx if slices are vertical 2
a
d
a
V   A( y )dy if slices are horizontal d
V     R ( y )  dy if slices are horizontal 2
c
Washer Method: For volumes of revolution not laying on the axis with slices perpendicular to the axis c
Shell Method: For volumes of revolution with slices parallel to the axis b
b
V     R ( x)     r ( x)  dx if slices are vertical V   2 rhdx if slices are vertical V     R ( y )     r ( y )  dy if slices are horizontal V   2 rhdy if slices are horizontal 2
2
a
d
2
2
c
a
d
c
Physical Applications: Physics Formulas Mass: Mass = Density * Volume (for 3‐D objects) Mass = Density * Area (for 2‐D objects) Mass = Density * Length (for 1‐D objects) Associated Calculus Problems Mass of a one‐dimensional object with variable linear density: b
b
Mass   (linear density ) dx
    ( x)dx distance
a
Work: Work = Force * Distance Work = Mass * Gravity * Distance Work = Volume * Density * Gravity * Distance a
Work to stretch or compress a spring (force varies): b
b
b
a
a Hooke ' s Law
for springs
Work   ( force)dx   F ( x)dx  
a
kx

dx Work to lift liquid: d
Work   ( gravity )(density )(distance) ( area of a slice) dy



c
volume
d
W   9.8*  * A( y ) *(a  y )dy (in metric)
c
Force/Pressure: Force = Pressure * Area Pressure = Density * Gravity * Depth Force of water pressure on a vertical surface: d
Force   ( gravity )( density )(depth) ( width) dy


c
d
area
F   9.8*  *(a  y ) * w( y )dy (in metric)
c
Integration by Parts: Knowing which function to call u and which to call dv takes some practice. Here is a general guide: 1
u Inverse Trig Function Logarithmic Functions x, arccos x, etc ) ( log 3 x, ln( x  1), etc ) Algebraic Functions ( x , x  5,1/ x, etc ) Trig Functions ( sin(5 x ), tan( x ), etc ) dv Exponential Functions ( sin
3
3x
3x
( e ,5 , etc ) Functions that appear at the top of the list are more like to be u, functions at the bottom of the list are more like to be dv. Trig Integrals: Integrals involving sin(x) and cos(x): 1.
2.
3.
Integrals involving sec(x) and tan(x): If the power of the sine is odd and positive: Goal: u  cos x i. Save a du  sin( x ) dx ii. Convert the remaining factors to cos( x ) (using sin 2 x  1  cos 2 x .) 1.
If the power of the cosine is odd and positive:
Goal: u  sin x i. Save a du  cos( x ) dx ii. Convert the remaining factors to sin( x ) (using cos 2 x  1  sin 2 x .) 2.
If both sin( x ) and cos( x ) have even powers: Use the half angle identities: i.
sin ( x ) 
1
ii.
cos ( x ) 
1
2
2
2
2
1  cos(2 x )  1  cos(2 x)  If the power of sec( x ) is even and positive: Goal: u  tan x i. Save a du  sec ( x ) dx ii. Convert the remaining factors to 2
tan( x ) (using sec x  1  tan x .) 2
2
If the power of tan( x ) is odd and positive: Goal: u  sec( x ) i. Save a du  sec( x ) tan( x ) dx ii. Convert the remaining factors to sec( x ) (using sec x  1  tan x .) 2

2
If there are no sec(x) factors and the power of tan(x) is even and positive, use sec x  1  tan x
2
2
2
2
to convert one tan x to sec x  Rules for sec(x) and tan(x) also work for csc(x) and cot(x) with appropriate negative signs
If nothing else works, convert everything to sines and cosines. Trig Substitution: Expression Substitution a2  u2 u  a sin  
a2  u2 u  a tan  
u 2  a2 u  a sec  Domain 
2

2
Simplification 
  a 2  u 2  a cos   
a 2  u 2  a sec  2
 2
0     , 
 2
u 2  a 2  a tan  Partial Fractions: Linear factors: Irreducible quadratic factors:
P( x)
A
B
Y
Z


 ... 

m
2
m 1
( x  r1 )
( x  r1 ) ( x  r1 )
( x  r1 )
( x  r1 ) m
P( x)
Ax  B
Cx  D
Wx  X
Yx  Z
 2
 2
 ...  2
 2
2
m
2
m 1
( x  r1 )
( x  r1 ) ( x  r1 )
( x  r1 )
( x  r1 ) m
If the fraction has multiple factors in the denominator, we just add the decompositions.