Download Get PDF - OSA Publishing

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Fiber-optic communication wikipedia , lookup

Optical flat wikipedia , lookup

Optical amplifier wikipedia , lookup

Birefringence wikipedia , lookup

Photon scanning microscopy wikipedia , lookup

Atmospheric optics wikipedia , lookup

Retroreflector wikipedia , lookup

Magnetic circular dichroism wikipedia , lookup

Passive optical network wikipedia , lookup

Optical coherence tomography wikipedia , lookup

3D optical data storage wikipedia , lookup

Nonimaging optics wikipedia , lookup

Interferometry wikipedia , lookup

Optical tweezers wikipedia , lookup

Photonic laser thruster wikipedia , lookup

Silicon photonics wikipedia , lookup

Harold Hopkins (physicist) wikipedia , lookup

Optical rogue waves wikipedia , lookup

Nonlinear optics wikipedia , lookup

Transcript
Photonic crystals for matter waves: Bose-Einstein
condensates in optical lattices
Elena A. Ostrovskaya and Yuri S. Kivshar
Nonlinear Physics Group and ARC Centre for Quantum-Atom Optics,
Research School of Physical Sciences and Engineering, Australian National University,
Canberra ACT 0200, Australia
[email protected]
http://wwwrsphysse.anu.edu.au/nonlinear/
Abstract: We overview our recent theoretical studies on nonlinear atom
optics of the Bose-Einstein condensates (BECs) loaded into optical lattices.
In particular, we describe the band-gap spectrum and nonlinear localization
of BECs in one- and two-dimensional optical lattices. We discuss the
structure and stability properties of spatially localized states (matter-wave
solitons) in 1D lattices, as well as trivial and vortex-like bound states of
2D gap solitons. To highlight similarities between the behavior of coherent
light and matter waves in periodic potentials, we draw useful parallels
with the physics of coherent light waves in nonlinear photonic crystals and
optically-induced photonic lattices.
© 2004 Optical Society of America
OCIS codes: (020.0020) Atomic and molecular physics; (190.0190) Nonlinear optics
References and links
1. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
2. S.F. Mingaleev and Yu.S. Kivshar, “Self-trapping and stable localized modes in nonlinear photonic crystals,”
Phys. Rev. Lett. 86, 5474 (2001).
3. R. Slusher and B. Eggleton, eds., Nonlinear Photonic Crystals (Springer-Verlag, Berlin, 2003).
4. Yu.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San
Diego, 2003).
5. J.W. Fleischer, T. Carmon, and M. Segev, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
6. D. Neshev, E.A. Ostrovskaya, Yu.S. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,”
Opt. Lett. 28, 710 (2003).
7. J.W. Fleischer, M. Segev, N.K. Efremidis, and D.N. Christodoulides, “Observation of two-dimensional discrete
solitons in optically induced nonlinear photonic lattices,” Nature 422, 147 (2003).
8. J.H. Denschlag, J.E. Simsarian, H. Haffner, C. McKenzie, A. Browaeys, D. Cho, K. Helmerson, S.L. Rolston,
and W.D. Phillips, “A Bose-Einstein condensate in an optical lattice,” J. Phys. B 35, 3095 (2002).
9. S. Peil, J.V. Porto, B. Laburthe Tolra, J.M. Obrecht, B.E. King, M. Subbotin, S.L. Rolston, and W.D. Phillips,
“Patterned loading of a Bose-Einstein condensate into an optical lattice,” Phys. Rev. A 67, 051603 (2003).
10. M. Jona-Lasinio, O. Morsch, M. Cristiani, N. Malossi, J.H. Müller, E. Courtade, M. Anderlini, and E. Arimondo,
“Asymmetric Landau-Zener tunneling in a periodic potential,” Phys. Rev. Lett., 91, 230406 (2003).
11. E.A. Ostrovskaya and Yu.S. Kivshar, “Matter-wave gap solitons in atomic band-gap structures,” Phys. Rev. Lett.
90, 160407 (2003).
12. O. Zobay, S. Pötting, P. Meystre, and E.M. Wright, “Creation of gap solitons in Bose-Einstein condensates,”
Phys. Rev. A 59, 643 (1999).
13. V.V. Konotop and M. Salerno, “Modulational instability in Bose-Einstein condensates in optical lattices,” Phys.
Rev. A 65, 021602 (2002).
14. P.J. Louis, E.A. Ostrovskaya, C.M. Savage, and Yu.S. Kivshar, “Bose-Einstein condensates in optical lattices:
band-gap structure and solitons,” Phys. Rev. A 67, 013602 (2003).
#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 19
15. N.K. Efremidis and D.N. Christodoulides, “Lattice solitons in Bose-Einstein condensates,” Phys. Rev. A 67
063608 (2003).
16. E.A. Ostrovskaya and Yu. S. Kivshar, “Localization of two-component Bose-Einstein condensates in optical
lattices,” arXiv: http://xxx.arxiv.org/abs/cond-mat/0309127
17. B. Eiermann, P. Treutlein, Th. Anker, M. Albiez, M. Taglieber, K.-P. Marzlin, and M.K. Oberthaler, “Dispersion
management for atomic matter waves,” Phys. Rev. Lett. 91, 060402 (2003).
18. L. Fallani, F. S. Cataliotti, J. Catani, C. Fort, M. Modugno, M. Zawada, and M. Inguscio, “Optically induced
lensing effect on a Bose-Einstein condensate expanding in a moving lattice,” Phys. Rev. Lett. 91, 240405 (2003).
19. B. Eiermann, Th. Anker, M. Albeiz, M. Taglieber, and M.K. Oberthaler, “Bright atomic solitons for repulsive
interaction”, In: Proceedings of the 16-th International Conference on Laser Spectroscopy (ICOLS’03) (13-18
July 2003, Palm Cove, Australia).
20. C. M. de Sterke and J. E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic
structures,” Phys. Rev. A 38, 5149 (1988).
21. H. Pu, L.O. Baksmaty, W. Zhang, N.P. Bigelow, and P. Meystre, “Effective-mass analysis of Bose-Einstein condensates in optical lattices: Stabilization and levitation,” Phys. Rev. A 67, 43605 (2003).
22. D. E. Pelinovsky, A.A. Sukhorukov, and Yu.S. Kivshar, “Bifurcations of gap solitons in periodic potentials,” in
preparation.
23. A.A. Sukhorukov, Yu. S. Kivshar, H. S. Eisenberg, and Y. Silberberg, “Spatial optical solitons in waveguide
arrays,” IEEE J. Quantum Electron. 39, 31 (2003).
24. A.A. Sukhorukov and Yu. S. Kivshar, “Spatial optical solitons in nonlinear photonic crystals,” Phys. Rev. E 65,
036609 (2002).
25. N. Aközbek and S. John, “Optical solitary waves in two-and three-dimensional nonlinear photonic band-gap
structures,” Phys. Rev. E 57, 2287 (1998).
26. J.J. Garcı̀a-Ripoll and V.M. Pèrez-Garcı̀a, “Optimizing Schrödinger functionals using Sobolev gradients: Applications to quantum mechanics and nonlinear optics,” SIAM J. Sci. Comput. 23, 1316 (2001).
27. B. B. Baizakov, V.V. Konotop, and M. Salerno, “Regular spatial structures in arrays of Bose-Einstein condensates
induced by modulational instability,” J. Phys. B 35, 5105 (2002).
28. N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E 66, 046602 (2002).
29. E.A. Ostrovskaya, T.J. Alexander, and Yu.S. Kivshar, “Matter-wave gap vortices in two-dimensional optical
lattices,” in preparation.
1.
Introduction
Photonic band-gap materials [1] – artificial periodic structures fabricated in a dielectric medium
with a high refractive index contrast – offer new possibilities for the control and manipulation
of coherent light waves. Diffraction management, localization, and controlled steering of light
in periodic band-gap structures, such as fiber Bragg gratings and photonic crystals, has revolutionized modern photonics and laid the foundation for the development of novel types of
integrated photonic devices. The study of nonlinear photonic crystals made of a Kerr nonlinear
material [2, 3], has revealed that such structures can support self-trapped localized modes of the
electromagnetic field in the form of optical gap solitons [4] with the energies inside the photonic gaps of a periodic structure. Recent demonstration of the light scattering in dynamically
reconfigurable photonic structures – optically-induced refractive index gratings in nonlinear
materials – has opened up novel ways to control light propagation and localization [5, 6, 7].
On the other hand, many recent experimental studies of Bose-Einstein condensates (BECs)
in periodic potentials of optical lattices [8, 9, 10] demonstrate an unprecedented level of control
and manipulation of coherent matter waves in the reconfigurable crystal-like structures created
by light. Due to the inherent nonlinearity of coherent matter waves which is introduced by the
interactions between atoms, BEC in a lattice potential forms a periodic nonlinear system which
is expected to display rich and complex dynamics.
The modelling of both nonlinear optical and nonlinear matter-wave dynamics is often based
on the nonlinear Schrödinger equation, which is used to describe both the electromagnetic
field envelope and the BEC macroscopic wavefunction (mean-field). This model reflects similarities between the physics of coherent light and matter waves, which aid in understanding
and predicting the nonlinear behavior of BEC in an optical lattice. Similar to periodic photonic
#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 20
structures for coherent light waves, optical lattices form band-gap structures for coherent matter
waves [11] which modify the diffraction properties of atomic wavepackets. Different diffraction
regimes were predicted to lead to nonlinear localization of condensates with both attractive and
repulsive interactions in the spectral gaps of the atomic band-gap structure [12, 13, 14, 15, 16].
Recent experiments on nonlinear dynamics of BEC in a lattice have demonstrated both diffraction management [17, 18] and nonlinear localization of the atomic wavepackets in the form of
the matter-wave gap solitons [19].
In this paper we describe the structure and stability properties of nonlinear localized states of
BEC in one- and two-dimensional optical lattices, and make links to parallel studies in nonlinear
optics of periodic photonic structures such as nonlinear photonic crystals and optically-induced
photonic lattices.
2.
Model
The dynamics of a Bose-Einstein condensate loaded into an optical lattice can be described in the mean-field approximation, by the nonlinear Gross-Pitaevskii (GP), or nonlinear
Schrödinger, equation for the macroscopic condensate wavefunction Ψ(r,t),
h̄2 2
∂Ψ
2
= − ∇ +V (r) + g3D |Ψ| Ψ
(1)
ih̄
∂t
2m
where V (r) is the time-independent trapping potential, and g3D = 4π h̄2 as /m characterizes the
two-body interactions for a condensate with atoms of mass m and s-wave scattering length
as . The scattering length as is positive for repulsive interactions and negative for attractive
interactions.
We consider a trapping potential V (r) of the form
1
V (r) = m(ωx x2 + ωy y2 + ωz z2 ) +VL ,
2
(2)
where the first term describes an anisotropic parabolic potential due to a magnetic trap. The
effective periodic potential, VL , is formed by an optical lattice, which we consider to be either
one-dimensional (1D),
(3)
VL (x) = V0 sin2 (Kx),
or two-dimensional (2D):
VL (x, y) = V0 sin2 (Kx) + sin2 (Ky) .
(4)
The 1D (2D) lattice is created by a pair (two pairs) of counter-propagating laser beams with the
wavelength λ = 2π /K, and the lattice depth, V0 , is proportional to the intensity of the standing
light wave.
Equation (1) can be made dimensionless using the characteristic length aL = 1/K, energy
Erec = h̄2 /ma2L , and time ωL−1 = h̄/Erec scales of the lattice. In dimensionless units, the twobody interaction coefficient is given by g3D = 4π (as /aL ), and the lattice depth is measured in
units of the lattice recoil energy, Erec .
3.
One-dimensional atomic band-gap structures
We now assume a cigar-shaped condensate weakly trapped in x-direction (ωx ωy,z ≡ ω⊥ ). In
the directions of tight confinement, the condensate wavefunction can be described by the ground
state of a two-dimensional
radially symmetric quantum harmonic oscillator potential, with the
∞
|Φ|2 dr = 1. The 3D wavefunction then separates as Ψ(r,t) = Φ(y, z)ψ (x,t),
normalization −∞
#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 21
5
vg
0
D
-5
1
1.5
µ
2
2.5
3
Fig. 1. Group velocity and effective diffraction coefficient for Bloch matter waves in an
optical lattice shown in the context of the bandgap spectrum with the Bloch bands (shaded)
and gaps (open); V0 = 2.0.
and the transverse dimensions can be intergrated out in the dimensionless Eq. (1), yielding the
1D GP equation:
∂ψ
1 ∂2
2
= −
i
+V
(x)
+
σ
|
ψ
(x,t)|
ψ
(5)
L
∂t
2 ∂ x2
√
where the wavefunction is rescaled as ψ → ψ g1D , g1D = 4(as /aL )(ω⊥ /ωL )2 , σ = sign(g1D ),
and the external potential is approximated by the quasi-1D periodic potential of the optical
lattice, VL (x) = sin2 (x), by neglecting the contribution of a weak magnetic confinement.
The stationary states of a condensate in a quasi-1D infinite periodic potential are described
by solutions of Eq. (5) of the form: ψ (x,t) = φ (x) exp(−iµ t), where µ is the corresponding
chemical potential. The case of a noninteracting condensate formally corresponds to g1D = 0,
and the condensate wave function can be represented as a superposition of Bloch waves,
φ (x) = b1 φ1 (x)eikx + b2 φ2 (x)e−ikx ,
(6)
where φ1,2 (x) have periodicity of the lattice potential, b1,2 are constants, and k is the Floquet
exponent. The linear matter-wave spectrum consists of bands of eigenvalues µn,k in which k(µ )
is a (real) wavenumber of amplitude-bounded Bloch waves [14]. The bands are separated by
spectral gaps in which Im(k) = 0. The solutions at the band edges are stationary Bloch states
corresponding to the condensate density which is strongly and periodically modulated by the
lattice.
For an interacting condensate (g1D = 0), bright solitons can exist for chemical potentials
corresponding to the gaps of the linear matter-wave spectrum. The mechanism for nonlinear
localization in the gaps was first described for light waves in nonlinear periodic photonic structures by using the Bloch-wave envelope approximation near the band edge [20]. It has been
pointed out that, near the band edges, the characteristic diffraction coefficient for a coherent
wave is proportional to the band curvature at that edge, which can be both negative and positive. For a matter wave in an optical lattice, the group velocity, vg = ∂ µ /∂ k, and the effective
diffraction coefficient, D = ∂ 2 µ /∂ k2 (analogous to the inverse effective mass of an electron in
crystalline solids [21]), are shown in Fig. 1 for the Bloch waves in the first lowest-order bands
of a relatively shallow lattice. The balance of the repulsive (attractive) interactions and anomalous, D < 0, (normal, D > 0) diffraction near the top (bottom) of the bands (see Fig. 1), can lead
#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 22
Fig. 2. Band-gap spectrum of matter waves in an optical lattice shown as the Bloch bands
(shaded) and gaps (open), combined with the families of bright gap solitons in (left) repulsive and (right) attractive condensates (V0 = 5).
to formation of localized wavepackets - matter wave solitons - with zero group velocity. The
chemical potentials corresponding to such localized waves lie in the gaps of the Bloch-wave
spectrum for the matter waves of the noninteracting condensate (open areas in Fig. 1).
Employing the multi-scale perturbation series expansion for the chemical potential and the
gap soliton envelope, it is possible to show that, in general, two types of gap solitons bifurcate
from each band edge [22]. These are the bright solitons centered on the maxium (off-site)
and minimum (on-site) of the lattice potential, respectively. Several families of the lowestorder gap modes are presented in Fig. 2, for the case of both repulsive (left) and attractive
(right)
condensates. The families are characterized by the norm of the condensate wavefunction,
P = φ 2 (x)dx, which is proportional to the number of atoms in a localized state. Such localized
states exist in all band gaps, including the semi-infinite gap of the spectrum below the first
band [14], which is analogous to the total internal reflection gap of the photonic structures,
and where the existence of the localized states is due to conventional self-focusing. Near the
bottom (top) gap edge, gap solitons of the repulsive (attractive) BEC are well approximated
by a sech-like envelope of the corresponding Bloch wave, centered either on- or off-site. Near
the opposite edge of the gap, i.e. approaching the spectral band, the solitons develop extended
”tails” with the spatial structure of the Bloch wave at the corresponding band edge [14]. For
a sufficiently wide gap (i.e., in the relatively tight binding regime), the soliton deep inside the
gap may be strongly localized around a single well of the lattice potential. The bifurcations of
the two types of gap solitons from the band edges of the opposite ”polarity” (or sign of the
effective diffraction) are a general feature of the coherent waves in periodic systems, such as
spatial optical solitons in discrete waveguide arrays [23].
Stability of extended and localized modes in nonlinear systems is an important issue, since
only dynamically stable modes are likely to be generated and observed in experiments. To
#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 23
0.8
0.7
3
0.6
Peak density
Peak density
4
3.5
2.5
2
1.5
0.4
0.3
0.2
1
(a)
0.5
0
0
0.5
1000
2000
3000
4000
5000
6000
7000
(b)
0.1
0
0
2000
Time units
4000
6000
8000
10000
Time units
Fig. 3. Examples of a weakly unstable and stable soliton dynamics. Shown is peak density
(a) of the repulsive BEC off-site soliton [shown in Fig. 2 (left, b)] in the first gap (µ = 3.7),
and (b) of the attractive BEC on-site soliton [shown in Fig. 2 (right, a)] in the semi-infinite
gap (µ = 1.0). In (a) the initial state given by the exact (numerical) stationary solution of
Eq. (5) is perturbed by a symmetric excitation at 5% of the soliton peak density. In (b) the
antisymmetric internal mode is excited by an initial perturbation at 5% of the initial soliton
peak density.
determine the stability properties of the localized modes, we consider small perturbations to a
stationary gap soliton of the GP equation, φ (x), in the form
∗
ψ (x,t) = φ (x)e−iµ t + ε [(u + iw)eλ t + (u∗ + iw∗ )eλ t ]e−iµ t ,
(7)
where ε 1, and u(x), w(x) are spatially-dependent perturbation modes. We linearize the GP
equation (5) around the localized solution and obtain, to the first order in ε , a linear eigenvalue
problem for the perturbation modes
L− w = λ u,
L+ u = −λ w,
(8)
where L± = −(1/2)(∂ 2 /∂ x2 ) +VL (x) + 2σ φ 2 ± σ φ 2 − µ . The modes describing the development of instability have either purely real or complex eigenvalues λ ; in this latter case, the
instability is called an oscillatory instability.
We solve the eigenvalue problem for the perturbation modes numerically, as a matrix eigenvalue problem with Fourier interpolants for the differential operators. The results reveal that, in
agreement with the generalized Vakhitov-Kolokolov criterion (see, e.g., [4]), nodeless localized
states of the attractive BEC (such as the fundamental solitons in a semi-infinite gap [Fig. 2(a),
right]) are linearly stable as long as −∂ P/∂ µ > 0. Note that the criterion is “inverted” for our
choice of µ . The fundamental gap solitons of repulsive BEC [Fig. 2 (left, a)] are also linearly
stable.
The linear stability analysis shows that gap solitons of both attractive and repulsive BEC are
associated with a number of internal modes (Imλ = 0 and Reλ = 0). The excitation of these
modes usually leads to a persisting dynamics (e.g., amplitude oscillations) of the localized state
that does not lead to its decay. However, higher-order gap solitons of both attractive and repulsive condensates can experience oscillatory instability (Imλ = 0 and Reλ = 0) initiated by
resonances of internal modes with the bands of the inverted spectrum [22]. This mechanism
for weak spectral instability was first identified in studies of spatial optical solitons in onedimensional nonlinear photonic crystals [24]. In Fig. 3 we compare temporal evolution of the
weakly unstable gap soliton of the repulsive condensate in the first gap (a) with that of a linearly stable (attractive) BEC soliton in the semi-infinite spectral gap (b). The evolution of the
soliton peak density is shown in Fig. 3 for the cases when initial solitons are perturbed by a
5% of the peak density. These results indicate that the oscillatory instability is weak and, on
#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 24
realistic experimental time scales, can not provide a strong mechanism for the soliton decay
into spatially extended lattice states (which would otherwise prevent observation of localized
states in experiments).
4.
Two-dimensional band-gap structures
The theory of the nonlinear localized matter waves in optical lattices can be extended to the
case of two-dimensional lattices [11]. Nonlinear localization of BEC in higher-dimensional
lattices is qualitatively different because both the symmetry and dimensionality of the lattice
start to play an important role in the formation and properties of the band-gap structure and
the corresponding nonlinear localized modes. In particular, the problem of the existence and
stability of 2D matter-wave gap solitons of BEC with repulsive interatomic interactions loaded
into optical lattices, is analogous to the study of localized states of light waves in nonlinear
photonic crystals [2].
To simplify our analysis of the model (1), we assume that the weak magnetic confinement
characterized by trap frequencies ωx,y has little effect on the stationary states of the condensate
in the 2D lattice formed in the (x, y) plane of the condensate cloud. Under this assumption, the
trap component of the confining potential in the lattice plane can be neglected, and the model
can be reduced to a two-dimensional GP equation by the dimensionality reduction procedure
described above for the 1D case. The condensate wavefunction in the 2D lattice potential is
then described by the following equation:
1
∂ψ
= − ∇2⊥ +VL (x, y) + |ψ |2 ψ .
(9)
i
∂t
2
where ∇⊥ = ∂ 2 /∂ x2 + ∂ 2 /∂ y2 , VL (x, y) is the periodic potential
of the optical lattice, and the
√
√
wavefunction is rescaled as ψ → ψ g2D , with g2D = g3D / 2. The equation (9) is made dimensionless by using the ”natural” lattice units of energy, length, and frequency, described above.
In the simplest
case of the square
optical lattice, the potential of the optical lattice can be written
as VL = V0 sin2 (x) + sin2 (y) , where V0 is the amplitude of the optical lattice.
Stationary (time-independent) states of the condensate in an infinite periodic potential of a 2D
optical lattice are described by solutions of Eq. (9) of the form: ψ (r,t) = φ (r) exp(−iµ t), where
µ is the chemical potential. The case of a noninteracting condensate formally corresponds to
Eq. (9) being linear in ψ . According to the Bloch theorem, the stationary wavefunction can then
be sought in the form φ (r) = uk (r) exp(ikr), where the wave vector k belongs to a Brillouin
zone of the square optical lattice, and uk (r) = uk (r + d) is a periodic (Bloch) function with
the periodicity of the lattice. For the values of k within an n-th Brillouin zone, the dispersion
relation for the 2D Bloch waves, µn,k , is found by solving a linear eigenvalue problem:
1
(−i∇⊥ + k)2 +VL (r) un,k = µn (k)un,k .
(10)
2
The band-gap structure of the spectrum µ (k) of the atomic Bloch waves in the 2D optical lattice is shown in Fig. 4, in the reduced zone representation usually assumed in the theory of
crystalline solids and photonic crystals. Due to separability of the lattice potential, the Bloch
waves u(x, y) in the first band, at the high symmetry points (Γ → X → M) of the first irreducible Brillouine zone (see Fig 4), can be found as u(x, y; k) = u(1d) (x; kx )u(1d) (y; ky ), where
u(1d) are the corresponding 1D Bloch states. Different structure of the Bloch states in the first
band, at the values of k corresponding to the three symmetry points, are shown in Fig. 4 (right
column). By applying an envelope theory near the band edges, it can be deduced that each of
the Bloch states is associated with a (partially) localized state in the Γ, X, or M-gap. Similarly
#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 25
Γ
5
0.1
4
0.05
µ(k)
0
3
2
2
0
0
y
−2
x
−2
2
X
1
0.1
0
Γ
X
M
Γ
0
−0.1
2
2
0
0
y
−2
x
−2
M
0.1
0
−0.1
2
2
0
y
0
−2
−2
x
Fig. 4. Left: Dispersion diagram for a 2D square lattice (V0 = 1.5); dotted - the line µ = V0 ;
shaded - spectral bands, open - the lowest, semi-infinite, and the first complete gaps. Below:
lattice potential in the cartesian and reciprocal spaces. Right: Spatial structure of the 2D
Bloch waves at the extreme high-symmetry points of the first irreducible Brillouine zone.
to optical gap solitons in indirect gaps of higher-dimensional photonic crystals [25], matterwave gap solitons can be spatially localized in all directions only in the complete gap located
between the M and X-edges of the first and the second band, respectively (see Fig. 4). The
localization near the lower M-edge is possible due to the negative components of the effective diffraction tensor. We find spatially localized stationary solutions
of Eq. (9) numerically.
Our numerical procedure involves minimization of the norm N = f † f dr of the functional
f (φ ) = [(1/2)∇2⊥ − µ −V (r) − |φ |2 ]φ by following a descent technique with Sobolev preconditioning [26]. The minimization procedure yields a stationary state when N (φ ) → 0.
The family of fundamental bright matter-wave solitons in the first complete gap is presented
in Fig. 5 . For the repulsive condensate, such gap solitons exist in all band gaps excluding the
semi-infinite gap below the first band. The spatial structure of the lowest-order gap solitons
near the lower gap edge [Fig. 5(a)] has a characteristic structure of the symmetric envelope
superimposed onto the corresponding Bloch state [see Fig. 4]. The threshold value of the number of atoms (and therefore Pc ) needed for the soliton localization is determined by the theory
of lattice-free self-focusing in the 2D geometry. These weakly localized, low density modes
are similar to the near-band-edge modes described above for the case of one-dimensional gap
solitons. Deeper inside the gap, the matter-wave soliton becomes strongly localized [Fig. 5(b)],
before delocalizing again near the upper gap edge. Near that edge, extended tails [see Fig. 5(c)]
are developed in the directions along which the tunneling is assisted by lower inter-well barrier
heights and positive (normal) effective diffraction. By direct numerical simulations we have
confirmed that the strongly localized two-dimensional fundamental modes are dynamically sta#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 26
9
c
8
7
6
P
5
4
b
3
a
2
1
0
1.6
1.8
2
20
µ
2.4
2.8
2.6
20
(a)
15
10
10
10
y
y
5
0
0
−5
−5
−5
−10
−10
−10
−15
−15
−15
−20
−20
−20
−20
−15
−10
−5
0
5
10
15
20
(c)
15
5
0
3
20
(b)
15
5
y
2.2
−15
−10
x
−5
0
x
5
10
15
20
−20
−20
−15
−10
−5
0
5
10
15
20
x
Fig. 5. Top: Family of bright atomic gap solitons of repulsive BEC in a 2D optical lattice
(V0 = 1.5). Bottom: spatial structure of the BEC wavefunctions at the marked points of the
existence curve inside the gap.
ble. The possibility of the formation of periodic trains of such 2D localized structures, triggered
by the modulational instability of the nonlinear Bloch states, has been suggested in Ref. [27].
We have also found different families of higher-order localized gap modes that can be identified as in-phase and out-of-phase bound states of the fundamental gap solitons. These states can
be centered at the lattice potential minima or maxima, similarly to higher-order states in onedimensional lattices [14], and they can exhibit symmetry-breaking instabilities. In particular,
Figs. 6(a-c) shows three different examples of higher-order gap solitons. The simplest structure
of this kind is described by a pair of two fundamental gap solitons which are out-of-phase and
form a dipole [see Fig. 6(a)]. The similar structure of four solitons can exist as a quadrupole
state where the neighboring solitons are π out-of-phase [see Fig. 6(b)]. However, the most interesting structure, which is shown in Fig. 6(c), possesses a vortex-like phase dislocation, with
the phase winding by 2π around the low-density centre [as seen in Fig. 6(d)]. Such a bound
state can be identified as a gap vortex [29].
5.
Optically-induced photonic lattices
Although many similarities (including the structure of localized modes and their stability properties) exist between nonlinear atom optics in optical lattices and nonlinear optics in fabricated
photonic structures, the closest analog of the matter-wave band-gap structures can be found in
the new and rapidly developing field of optically-induced photonic lattices [5, 6, 7].
#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 27
20
20
(a)
15
10
10
5
y
y
5
0
0
−5
−5
−10
−10
−15
−15
−20
−20
(b)
15
−15
−10
−5
0
5
10
15
−20
−20
20
−15
−10
−5
0
x
20
10
15
20
2π
20
(c)
15
(d)
15
10
10
5
5
0
y
y
5
x
6
5
4
0
−5
−5
−10
−10
−15
−15
3
π
2
−20
−20
1
−10
0
x
10
20
−20
−20
−10
0
10
20
0
x
Fig. 6. Spatial structures of the BEC wavefunctions corresponding to higher-order gap solitons (V0 = 1.5): (a) dipole (µ = 2.0, P = 9.02), (b) quadrupole (µ = 2.0, P = 9.8), (c)
charge-one gap vortex (µ = 2.0, P = 16.2). (d) Phase structure of the gap vortex shown in
(c) (color-bar refers to the phase plot only).
In the existing experimental realizations of optically-induced photonic lattices, a periodic
modulation of the refractive index is induced by a plane wave interference pattern illuminating a photorefractive crystal with a strong electro-optic anisotropy [28]. The spatially periodic
interference pattern modulates the space-charge field in the crystal, which relates to the refractive index via electro-optic coefficients. The latter are substantially different for different
polarizations. As a result, the material nonlinearity experienced by waves polarized in the main
direction of the crystal is up to two orders of magnitude larger than that experienced by the
orthogonally polarized ones. When the lattice-forming waves are polarized orthogonally to the
main axis, their nonlinear self-action as well as any cross-action from the co-propagating probe
beam (polarized along the main axis) can be neglected. Thus, the periodic interference pattern propagates in the diffraction-free linear regime and creates a stationary refractive-index
grating [5, 6]. The effective induced grating exhibited by the probe light is almost identical to
the effective periodic potential experienced by matter waves in an optical lattice. Optically induced lattices open up an exciting possibility for creating dynamically reconfigurable photonic
structures in bulk nonlinear media, with a degree of control over the parameters of the periodic
structure approaching that of BECs in optical lattices. Nonlinear localization of coherent light
waves has been observed in both 1D and 2D optically-induced photonic lattices [5, 6, 7], in the
self-focusing regime (which is analogous to the attractive matter-wave localization regime).
#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 28
6.
Conclusions
We have studied the spectrum of matter waves and localization of Bose-Einstein condensates in
one- and two-dimensional optical lattices and demonstrated that the interaction of the condensate with a periodic lattice potential can be compared to the propagation of coherent light waves
in a nonlinear periodic photonic structure. Using the analogy with the physics of photonic bandgap structures, we have described some basic properties of matter-wave band-gap structures and
demonstrated numerically the existence of one- and two-dimensional matter-wave gap solitons,
spatially localized states of the condensate existing in the gaps of the matter-wave linear spectrum. We believe that the analogy between the physics of BEC in optical lattices and light waves
in nonlinear photonic crystals, as well as other types of periodic photonic structures, is useful
to reveal many novel features of the matter-wave dynamics in reconfigurable optically-induced
structures.
Acknowledgments
We would like to thank A. Sukhorukov, D. Neshev, and D. Pelinovsky for useful discussions
and collaboration on related photonics projects, and P. Louis and C. Savage for collaboration
on the BEC projects. This work was supported by the Australian Research Council (ARC)
through the Centre of Excellence program. The authors are members of the ARC Centre for
Quantum-Atom Optics.
#3388 - $15.00 US
(C) 2004 OSA
Received 19 November 2003; revised 31 December 2003; accepted 1 January 2004
12 January 2004 / Vol. 12, No. 1 / OPTICS EXPRESS 29