Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Equations – Electricity and Magnetism Circuits Current: I C 0 is the capacitance in a vacuum. dq P nqvd dt V j dA Ohm’s Law: V IR Inductance Mutual inductance: d B dI dB N M NA cos , dt dt dt M B2 B1 I1 I2 d B dI L , Self inductance: dt dt total flux N B L current I dI Voltage: V L dt 1 2 Energy: E LI 2 Complex impedance of a resistor: Z R R AC voltage: V V0 eiwt , Vact Re V Width of power resonance curve: V 1 1 Complex impedance: Z 0 I0 C j C Impedance in series: ZT Z1 Z 2 Impedance in parallel: 1 1 1 ZZ , ZT 1 2 ZT Z1 Z 2 Z1 Z 2 Kirchoff’s Law: The sum of all voltages around a circuit is 0 A AC current: I I 0 ei t Current density: J nqvd Electron gun equation: I A 1 2 mv eV 2 i , A j E V0 ei t I 0 ei t Z , conductivity dU VI I 2 R Power: P dt Charge: Q I dt Natural frequency of a circuit: o Quality factor: Q R 0 , L 1 LC Capacitance Q A 0 V d 1 1 1 Combining in series: Ceq C1 C2 Combining in parallel: Ceq C1 C2 Capacitance (Parallel plates): C dq d E o iC dt dt I dE Displacement current density: J D D o A dt 1 Potential Energy: EP V dq CV 2 2 U qV Energy density: u volume Dielectric: C C0 is the dielectric constant, or relative permeability. Displacement current: I D R L Complex resistance: Z L i L Inductance with magnetic material: Lm L0 Electric Coulomb’s Law: F 1 q1q2 E1 q2 4 0 r 2 Electric field: F2 1 qi E r̂ V 2 ij 4 0 i j rij q2 0 Electric potential: E d , qj U 1 V E dl q0 4 0 j ri Dipole moment: p qd E , where is the atomic polarizability Polarization (number times dipole moment): P N p E0 E , E 1 Polarization charge per unit volume P 1 Energy: U p E D E dV 2V Electric torque: p E Energy density: E2 E D u 0 0 E0 2 cos 2 kz t 2 2 Potential energy: dW dU F dl p E d 1 Equations – Electricity and Magnetism Potential difference: E Electric flux: E ds S Laplace’s Equation (no charge): 2 0 Poisson’s equation: 2 0 Induced surface charge: p P n̂ P F D 0 E P 0 E D ds dV F S V Magnetism d B Biot-Savart: B o I 4 r2 Dipole moment: m I A Energy density: u Field energy: U Torque: m B U B2 Volume 2 o LI 2 P dt 2 Potential energy: U m B dE B B B A A E t 2 A o j BH 2 Potential energy: U m B Magntism; B is magnetic susceptibility. M M N m B B ; B 0 B o Current per unit length of a cylinder; M is Overall Magnetism B0 is magnetism in air (magnetic cylinder inside solenoid): B B0 o M jB M “Magnetic Field” or “Magnetic Intensity”: B H M 0 H dl i B 0 H f 1 1 B 1 for most materials 1000 in magnetic materials. Diamagnetism: B , ve , m m B field down overall. Magnitude: ~ 10 5 Paramagnetism Orbital and spin components of the atom don’t cancel out. Randomly orientated B field applied alignment B . ~ 10 3 Ferromagnetism: Materials contain “domains” where dipoles are aligned. Applying a magnetic field aligns all the domain’s fields. Magnetism remains after B is removed. B ~ 1000 . Hysterisis (history dependant) Lenz’s Law “The direction of any magnetic induction effect is to oppose the cause of the effect” ElectroMagnetism Force (plus force on a conductor): F q E v B qE I d B E 0 0 B Waves in a vacuum (transverse): 2 E 2 B 2 E 0 0 z 2 zt t 2 E B z t Electro-: E E0 cos kz t B -Magnetism: B 0 cos kz t c Speed of Light: c 1 Relationship between E and B : B 1 k̂ E c 2 E t 2 Poynting Vector (energy flux per second): 1 N E B , N cU A t , 0 2 E 0 0 N 1 E0 2 2 0 c 2 Equations – Electricity and Magnetism Radiation pressure: E2 N Pabsorbed o o 2 c 2N Preflected o Eo 2 c Reflection (perfect conductor): E incident x̂Eo cos kz t , E reflected x̂Eo cos kz t Linear polarization: E z,t x̂Eox cos kz t ŷEox cos kz t Circular polarization: E z,t x̂Eox cos kz t ŷEox sin kz t Photon momentum: p E hf E c FB v2 2 o o v 2 FE c Maxwell Equations 1) Gauss's Law (Electric flux): qi Q E E ds i s o o o D F 2) Gauss’s Law (Magnetic Flux): B B dA BAcos E B 0 3) Ampere’s (corrected) law B d o I enclosed loop o I c I d d E o I c o dt 1 E B o J 2 c t D H jf t 4) d B d B E t In free space, j 0 . E dl EM in Materials 2 B 2 B o o 2 t 2 E 2 E o o 2 t 1 n 2 o o 2 2 2 v c c c ck n v 1 for most materials D f B 0 B E t E B o o t sin c Snell’s Law: n sin v Incident: E1 x̂E0 I ei t kz B1 ŷB0 I ei t kz k1 o o Transmitted: E1 x̂E0T ei t kz B1 ŷB0T ei t kz k1 o o Reflected: E1 x̂E0 Rei t kz B1 ŷB0 Rei t kz E I E R ET E0I E0R E0T (continuous at surface) H I H R HT B0 I o B0 R o B0T o E0 I E0 R E0T 3 Equations – Electricity and Magnetism E 2 1 n Reflection coefficient: R 0 R2 1 n E0 I Transmission coefficient: E0T 2 v E0T 2 4n E0T 2 v T n T E0 I 2 c E0 I 2 E0 I 2 c 1 n 2 2 EM and conducting media E 0 J 0 0 t j E 2 E E o 2 z t i kz t E E0 e k 1 i 0 1 i 2 Skin depth Distance over which amplitude decreases by e 2 (2.72): 0 EM and Plasma Electron density ne , temperature Te 0, j 0 E t Fe me r eE (collisionless) j ner 0 j 0 0 dj ne2 E ner dt me 2 E 0 0 0 nee 2 me Plasma frequency p ne e2 0 me p , waves are attenuated. c vp vg k p2 1 2 d c dk n dn d Optics nr ni 1 1 1 Lensmaker’s Equation: u v f Snell’s Law: n1 sin i n2 sin r h v f Lens Magnification: v hu f 4GM D Gravitational Lenses: , ls 2 bc Ds Stoke’s Parameters: I E0 x 2 E0 y 2 Brewster’s Angle: tan i Q E0 x 2 E0 y 2 U 2E0 k E0 y cos V 2E0 x E0 y sin Young’s Double Slit d sin n Resolution d (due to diffraction) Refractive index n 2 E e2 E n 0 e t 2 me k 2 0 0 2 Refractive index in a plasma: p2 p2 n 1 2 1 2 2 If the pulse is observed at two different frequencies, then Dne can be measured. D Dn t v c c ck v Units Flux (Weber): 1Wb 1Tm2 1NmA1 Inductance (Henry): 1H 1Wb A1 1V s A1 1s Magnetism (Gauss): 1G 10 4 T Magnetism (Tesla): 1T 1N sC 1 m1 1N A1 m1 Magnetic Dipole Moment : 1N s 2 C 2 1N A2 Wb A1 m1 1T m A1 1H m1 Volt: 1V 1J C 1 4