Download 1Q20-001 Boulder rolling down a hill

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Rotational spectroscopy wikipedia , lookup

Relativistic mechanics wikipedia , lookup

Work (thermodynamics) wikipedia , lookup

Internal energy wikipedia , lookup

Eigenstate thermalization hypothesis wikipedia , lookup

Kinetic energy wikipedia , lookup

Hunting oscillation wikipedia , lookup

Transcript
1Q20-001
Boulderrollingdownahill-rotationalenergy
PROMPTSAFTER
Aboulderontopofahillbreaksfreeandbeginstorolldownthehillwithoutslipping.
Approximatingtheboulderasasolidspherewithradius3m,whatisthespeedofthe
boulderatthebottomofthehillafterithasundergoneaverticaldisplacementof100m?
STRATEGY
Wewillusetheprincipleofconservationofmechanicalenergytosolveforthespeedofthe
boulderatthebottomofthehill.
𝑈! + 𝐾! = 𝑈! + 𝐾! Conservationofmechanicalenergyappliestothisproblem,
because,althoughfrictionalforceisactingontheboulder
r
causingittoroll,noworkisdonebyfrictionontheboulder.
y
r=3m
h
IMPLEMENTATION
x
h = 100 m
Energy
Energy
First,weneedtodeterminethetypesofmechanicalenergyin
Initial
Final
boththeinitial(topofthehill)andthefinal(bottomofthe
hill)states.Sincetheboulderisinitiallyatrest,ithasonly
Kr
gravitationalpotentialenergy.Thetotalmechanicalenergy
Kt
𝐸! atthetopofthehillisgivenby
𝐸! = 𝑈! = 𝑚𝑔ℎ! K
U
K
U
Aftertheboulderhasundergoneaverticaldisplacementof100
m,thegravitationalpotentialenergyhasbeenconvertedtotranslationalandrotational
kineticenergy.Inthefinalstate,theboulderwillhaveacombinationofgravitational
potentialenergy,translationalkineticenergyandrotationalkineticenergy.Ifwetakethe
bottomofthehilltobewherethegravitationalpotentialenergyiszero,thetotalmechanic
energy𝐸! inthefinalstatebecomes
1
1
𝐸! = 𝐾!"#$% + 𝐾!"# = 𝑚𝑣 ! + 𝐼𝜔 ! 2
2
Thetotalmechanicalenergyatthetopandatthebottomofthehillisthesame(conserved),
soourconservationofmechanicalenergyequationbecomes
1
1
𝑚𝑣 ! + 𝐼𝜔 ! 2
2
Nowwecansolveforthetranslationalspeedoftheboulderatthebottomofthehill.The
rotationalkineticenergyisdependentontherotationalinertiaandangularvelocityofthe
boulder.Wearetoldthattheboulderis(a)asolidsphereand(b)thatisnotslippingasit
!
rolls–thismeansthatwecanusetherotationalinertiaofasolidsphere𝐼 = 𝑚𝑟 ! andthe
𝑚𝑔ℎ! =
!
!
relationshipbetweenangularspeedandtranslationalspeed𝜔 = toputrotationalkinetic
!
energyintermsofthemass,radius,andtranslationalspeedoftheboulder.
𝑚𝑔ℎ! =
1
1 2
𝑚𝑣 ! +
𝑚𝑟 !
2
2 5
𝑣
𝑟
!
=
7
𝑚𝑣 ! 10
Thisequationcanbesimplifiedfurtherasmassoftheboulderappearsonbothsidesofthe
equationandcanbecancelled.
1Q20-001
Boulderrollingdownahill-rotationalenergy
PROMPTSAFTER
CALCULATION
Solvingforthetranslationalspeedoftheboulderatthebottomofthehillbecomes:
10 ∙ 9.8 m ! ∙ 100 m
10𝑔ℎ!
s
=
= 37 m s
7
7
Note:Thespeedoftheboulderisindependentofboththemassandtheradiusofthe
boulder.
SELF-EXPLANATIONPROMPTS
𝑣=
1. Frictionalforceisneededforthebouldertoroll,andnotslide,downthehill.Explain
why“noworkisdonebyfrictionontheboulder”.
2. Explainwhytheboulderhasonlyrotationalandtranslationalkineticenergyatthe
bottomofthehill.
3. Howwouldthefinalspeedchangeiftheboulderwasslidingdownthehillinsteadof
rolling?Deriveanexpressionforthespeedoftheboulderatthebottomofthehillifit
wasslidinginsteadofrolling.
1Q20-001
Boulderrollingdownahill-rotationalenergy
PROMPTSAFTER