Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chemistry I. Chemical elements and their pronunciation in English II. Chemical nomenclature 1. Inorganic chemistry – naming inorganic compounds 2. Organic chemistry – naming organic compounds III. How to read chemical formulas in inorganic chemistry – examples IV. How to read chemical formulas in organic chemistry – examples V. Notes on reading chemical formulas VI. Some abbreviations in common use in chemistry Source: http://sciencenotes.org/wp-content/uploads/2015/01/PeriodicTableMuted.png Symbol Atomic number English Pronunciation Czech Ac Ag Al Am Ar As At Au B Ba Be Bh Bi 89 47 13 95 18 33 85 79 5 56 4 107 83 actinium silver aluminium americium argon arsenic astatium gold, aurum boron barium beryllium bohrium bismuth æk’tiniəm silvə ælə’miniəm əme‘risiəm ‘a:gən ‘a:sənik əs‘teitiəm ‘gəuld; ‘o:rəm ‘bo:ron ‘beəriəm bə‘riliəm ‘bo:riəm ‘bizməɵ aktinium stříbro hliník americium argon arsen astat zlato bór baryum beryllium bohrium bizmut Bk Br C Ca Cd Ce Cf Cl Cm Cn Co Cr 97 35 6 20 48 58 98 17 96 112 27 24 Cs Cu Db Ds Dy Es Er Eu F Fe Fl Fm Fr Ga Gd Ge H He Hf Hg Ho Hs I In Ir K Kr La Li Lu Lv Lw Md Mg Mn Mo Mt 55 29 105 110 66 99 68 63 9 26 114 100 87 31 64 23 1 2 72 80 67 108 53 49 77 19 36 57 3 71 116 103 101 12 25 42 109 berkelium bromine carbon calcium cadmium cerium californium chlorine curium copernicium cobalt chromium, chrome caesium copper, cuprum dubnium darmstadtium dysprosium einsteinium erbium europium fluorine iron, ferrum flerovium fermium francium gallium gadolinium germanium hydrogen helium hafnium mercury holmium hassium iodine indium iridium potassium krypton lanthanum lithium lutecium livermorium lawrentium mendelevium magnesium manganese molybdenum meitnerium bə:’keiliəm ‘brəumi:n ‘ka:bən ‘kælsiəm ‘kædmiəm ‘siəriəm ,kæli’fo:niəm ‘klo:ri:n ‘kjuəriəm kopən’i:šiəm ‘kəu,bo:lt ‘krəumiəm, ‘krəum ‘si:ziəm ‘kopə, ‘kju:prəm ‘dubniəm ,da:m’stætiəm ,dis’prəuziəm ,ain’stainiəm ‘ə:biəm ,juə’rəupiəm ‘fluəri:n ‘aiən, ‘ferəm fle’rəuviəm ‘fə:miəm ‘frænsiəm ‘gæliəm ,gædə’liniəm ,džə:’meiniəm ‘haidrədžən ‘hi:liəm ‘ha:fniəm ‘mə:kjuri ‘həulmiəm ‘hæsiəm ‘aiədi:n ‘indiəm ai’ridiəm pə’tæsiəm ‘kriptən ‘lænɵənəm ‘liɵiəm lu’ti:šiəm ,livə’mo:riəm ,lo:’rentiəm ,mendə’li:viəm mæg’ni:ziəm ‘mængəni:z mə’libdinəm mait’ne:riəm berkelium bróm uhlík vápník kadmium cer kalifornium chlór curium kopernicium kobalt chróm cesium měď dubnium darmstadtium dysprosium einsteinium erbium europium fluor železo flerovium fermium francium gallium gadolinium germanium vodík helium hafnium rtuť holmium hassium jód indium iridium draslík krypton lanthan lithium lutecium livermorium lawrencium mendelevium hořčík mangan molybden meitnerium N Na Nb Nd Ne Ni No Np O Os P Pa Pb Pd Pm Po Pr Pt Pu Ra Rb Re Rf Rg Rh Rn Ru S Sb Sc Se Sg Si Sm Sn Sr Ta Tb Tc Te Th Ti Tl Tm U Uuo Uup Uus Uut V 7 11 41 60 10 28 102 93 8 76 15 91 82 46 61 84 59 78 94 88 37 75 104 111 45 86 44 16 51 21 34 106 14 62 50 38 73 65 43 52 90 22 81 69 92 118 115 117 113 23 nitrogen sodium niobium neodymium neon nickel nobelium neptunium oxygen osmium phosphorus protactinium lead, plumbum palladium prometheum polonium praseodymium platinum plutonium radium rubidium rhenium rutherfordium roentgenium rhodium radon ruthenium sulphur antimony scandium selenium seaborgium silicon samarium tin, stannum strontium tantalum terbium technecium tellurium thorium titanium thallium thullium uranium ununoctium ununpentium ununseptium ununtrium vanadium ‘naitrədžən ´səudiəm nai’əubiəm niə’dimiəm ‘ni:on ‘nikl ,nəu’bi:liəm ,nep’tju:niəm ‘oksidž(ə)n ‘ozmiəm ‘fosfərəs ,proutæk’tiniəm ‘led, ‘plambəm pə’leidiəm prə’mi:ɵiəm pə’ləuniəm ,præziə’dimiəm ‘plætinəm ,plu:’təouniəm ‘reidiəm ru’bidiəm ‘ri:niəm raθə’fo:diəm ,rən’dži:niəm ‘rəudiəm ‘reidən ,ru:’ɵiniəm ‘salfə ‘æntiməni ‘skændiəm si’liniəm si:’bogiəm ‘silikən sə’ma:riəm ‘tin, ‘stænəm ‘strontiəm ‘tæntələm ‘tə:biəm tek’nišiəm te’ljuəriəm ‘ɵo:riəm tai’teiniəm ‘ɵæliəm ‘ɵju:liəm ju’reiniəm ə,nan’oktiəm ə,nan’pentiəm ə,nan’septiəm ə’nantriəm və’neidiəm dusík sodík niob neodym neon nikl nobelium neptunium kyslík osmium fosfor protaktinium olovo palladium promethium polonium praseodym platina plutonium radium rubidium rhenium rutherfordium roentgenium rhodium radon ruthenium síra antimon skandium selen seaborgium křemík samarium cín stroncium tantal terbium technecium tellur thorium titan thalium thulium uran ununoctium ununpentium ununseptium ununtrium vanad W Xe Y Yb Zn Zr 74 54 39 70 30 40 tungsten xenon yttrium ytterbium zinc zirconium ‘taɳstən ‘zi:nən ‘itriəm i’tə:biəm ‘zink zə’kəuniəm wolfram xenon yttrium ytterbium zinek zirkonium Notes: - Before a newly found element is assigned its final name confirmed by IUPAC (International Union of Pure and Applied Chemistry), its name is based on a system of temporary names. They use prefixes based on Latin and Greek numerals indicating the atomic number followed by the ending – (i)um. Thus, e.g., livermorium (atomic number 116), the heaviest element yet and one of the latest products of nuclear fusion, called after the research centre in Livermore, USA, was first referred to as ununhexium. System of prefixes (and their symbols): 0 - nil (n) 1 - un (u) 4 - quad (q) 5 - pent (p) 8 - oct (o) 9 - enn (e) 2 - bi (b) 6 - hex (h) 3 - tri (t) 7 - sept (s) For example: the yet unnamed element with atomic number 113 can be theoretically called ununtrium (= un+un+tri+um) the yet unnamed element with atomic number 115 can be theoretically called ununpentium ( = un+un+pent+ium) - From the point of history, the names of elements can be divided into several groups, reflecting, for example: - the mineral in which they were found, e.g. calcium – vápník - from the Latin word calx (= vápno) silicon – křemík - from the Latin word silex (= křemen) - the colour properties, e.g. chlorine - chlór – from the Greek word chloros (= yellowgreen) iodine – jód – from the Greek word ioeidés (= violet); its vapours are violet - the names of planets and stars, e.g. helium – helium – from the Greek word helios (= Sun) mercury – rtuť – from the French word mercure (= rtuť) and the Greek hero neptunium – neptunium – after the name of the planet Neptun and the god - figures from mythology or history, e.g. tantalum – tantal – after the Greek king Tantalos prometheum – promethium – after the Greek hero Prometheus - names of famous scientists, e.g. fermium – fermium – after E. Fermi, the Italian physicist mendelevium – mendelevium – after D. I. Mendeleev, the Russian chemist bohrium – bohrium – after N. Bohr, the Danish scientist - geohraphical terms, e.g. polonium – polonium – after Poland, the country of M. Curie-Sklodowska dubnium – dubnium – after Dubna, the Russian centre of nuclear research livermorium – livermorium – after Livermore, the US centre of nuclear research gallium – gallium – after Gallia, the Latin word for France - Symbols of chemical elements are pronounced as letters of the alphabet, e.g. U [ju:] H [eič] S [es] - There are differences in the spelling of some names between British (BE) and American English (AE), for example: in BE aluminium in AE aluminum sulphur, sulphate, sulphite sulfur, sulfate, sulfite - In compounds, some elements use also the Latin version of their name: Gold – Aurum Iron – Ferrum (e.g. Ferrum oxide) Lead – Plumbum Tin – Stannum II. Chemical nomenclature Chemical nomenclature /nəu´menkleičə/ is a system of rules for naming chemical compounds which is to ensure that the name of every compound, whether spoken or written, matches a single substance, and, if possible, that the substance has a single name. The first attempt to provide a system of naming compounds goes back to the late 18th century (A. Lavoisier) and has been constantly refined. The present nomenclature of inorganic and organic compounds as recommended by IUPAC can be found in its Red Book and Blue Book, respectively. However, there exist even other forms of naming depending on the user and addressee. Therefore, there is no single correct form of nomenclature, but there are various forms appropriate to the circumstances. The traditional system for naming inorganic compounds used below is intended for both non-specialist and specialist users among engineering students. Beginnings of the Czech inorganic nomenclature go back to the first half of the 19th century (J. S. Presl, J. Jungmann). However, fundamental for the system is the contribution of B. Batěk and E. Votoček of 1914 and 1941, expressing the oxidation state/number of elements, namely the system of affixes (-ný, -natý, -itý, -ičitý, -ičný/-ečný, -ový, -istý, -ičelý). 1. Inorganic chemistry – naming inorganic compounds A) Oxides The nomenclature of oxides depends mainly on the number of oxides which the given element can form. 1) If the element forms only one oxide, the name of the element (cation) comes first, without any change (irrespective of the valence state of the element), followed by the word “oxide” [´oksaid], i.e. element + oxide e.g. Al2O3 – aluminium oxide (oxid hlinitý) 2) If the given element can form more than one oxide, the valence state is taken into consideration. It is expressed by: a) prefixes mono- [´monǝ-, ´mono-, ´monəu] di- [dai-] tri- [trai-] tetr(a)- [´tetrǝ-] pent(a)- [´pentǝ-/ pen´tæ-] hex(a)- [´heksǝ-/ hek´sæ-] hept(a)- [´heptǝ/, hep´tæ-] oct(a)- [´oktǝ-/ ok´tæ-] The prefix becomes part of the word “oxide” element + mono/di…oxide e.g. NO2 – nitrogen dioxide (oxid dusičitý) N2O3 – nitrogen trioxide (oxid dusitý) N2O5 – nitrogen pentoxide (oxid dusičný) b) affixes -ous [-ǝs] (for the lower valence state) -ic [-ik] (for the higher valence state) The affix is added to the name of the cation to distinguish between the R2O and RO types of oxides. They are used only with Latin names of elements: cation of the element …ous + oxide cation of the element …ic + oxide e.g. N2O – nitrous oxide (oxid dusný) NO – nitric oxide (oxid dusnatý) c) prefix sesqui- [´seskwi-] The prefix becomes part of the word “oxide” of the R2O3 type element + sesquioxide e.g. Mn2O3 – manganese sesquioxide (oxid manganitý) d) prefix sub- [sab-] or hemi- [´hemi-] The prefix denotes an oxide in a valence state lower than the common valence state of the element: element + sub/hemi…oxide e.g. Pb2O – lead suboxide, lead hemioxide (suboxid železa) e) prefix per- [pǝ-] or super- [´sju(:)pǝ-] The prefix denotes a peroxide. e.g. H2O2 – hydrogen peroxide (peroxide vodíku) 3) Oxides with two different valence states of the element are denoted by combining the names of both oxides: Fe3O4 – ferriferous oxide, ferrosoferric oxide (oxid železnato-železitý) B) Acids 1) Acids not containing oxygen atoms are denoted by: a) affix –ic [-ik] and the word “acid” [´æsid]: e.g. HCl – hydrochloric acid (kyselina chlorovodíková) Hl – hydroiodic acid (kyselina jodovodíková) b) or the acidic molecules can be considered compounds with hydrogen and the names are formed as with oxides: e.g HCl – hydrogen chloride (chlorovodík, plyn) Hl – hydrogen iodide (jodovodík, plyn) 2) Acids containing oxygen atoms: To name the acid, the number of possible acids is decisive: a) If only one acid can be formed, its name is formed by adding –ic [-ik] to the element e.g. H2CO3 – carbonic acid (kyselina uhličitá) b) If only two acids can be formed, as with oxides, the affix –ous [-ǝs] denotes the lower valence acid and –ic [-ik] the higher valence acid: e.g. HNO2 – nitrous acid (kyselina dusitá) HNO3 – nitric acid (kyselina dusičná) c) If the given element forms more than two acids, the acid in the lowest valence state combines the prefix hypo- [´haipəu-] with the affix –ous [-ǝs]; for the highest valence the affix –ic [-ik] and the prefix per- [pǝ-] are combined: e.g. HClO – hypochlorous acid (kyselina chlorná) HClO2 – chlorous acid (kyselina chloritá) HClO3 – chloric acid (kyselina chlorečná) HClO4 – perchloric acid (kyselina chloristá) d) Similar to the Czech nomenclature, the English system uses the following prefixes meta- [´metǝ-] ortho- [´oθǝ-, o´θo-] pyro- [´pairəu-] thio- [´θaiəu-] hypo- [´haipə-]: e.g. HPO3 – metaphosphoric acid (kyselina metafosforečná) H3PO4 – orthophosphoric acid (kyselina trihydrogenfosforečná) H4P2O7 – pyrophosphoric acid (kyselina difosforečná) H3PO3S – thiophosphoric acid (kyselina thiofosforečná) C) Hydroxides Similar to oxides, the word hydroxide [hai´droksaid], is combined 1) with the unchanged name of the cation if only one hydroxide can be formed: e.g. NaOH – sodium hydroxide (hydroxid sodný) 2) with the name of the element with affixed –ous [-ǝs] or –ic [-ik] to distinguish between the lower and higher valence states, respectively: e.g. Fe(OH)2 – ferrous hydroxide (hydroxid železnatý) Fe(OH)3 – ferric hydroxide (hydroxid železitý) D) Salts 1. Salts of acids not containing oxygen atoms: To name the salt, the number of possible salts is decisive: a) If the cations form a salt in a single valence state, the name is formed as with oxides, i.e. the cation remains unchanged and the name is given by the anion with the affix –ide [-aid]: element + anion…ide e.g. NaCl – sodium chloride (chlorid sodný) 2) If the cation forms salts in various valence states, then, similar to oxides, the valence state is taken into consideration. It is expressed by: a) prefixes mono- [´monǝ-, ´mono-, ´monəu-] di- [dai-] tri- [trai-], etc.: e.g. FeS – iron monosulphide (sulfid železnatý) FeS2 – iron disulphide (disulfid železa) b) or affixes –ous [-ǝs] and - ic [-ik] The affix becomes part of the cation name. e.g. FeCl2 – ferrous chloride (chlorid železnatý) FeCl3 – ferric chloride (chlorid železitý) c) The valence state of the metal can also be denoted by the Roman numeral: e.g. FeCl3 – iron(III)-chloride (chlorid železitý) 2. Salts of acids containing oxygen The name is formed by starting from the name of the respective acid, and - the affix –ous [-ǝs] is replaced by the affix –ite [-ait] or - the affix –ic [-ik] by the affix –ate [-eit], preserving also the respective prefixes hypo- and per-: e.g. hypochlorous acid – hypochlorite (chlornan) chlorous acid – chlorite (chloritan) e.g. chloric acid – chlorate (chlorečnan) perchloric acid – perchlorate (chloristan) 2. Organic chemistry - naming organic compounds There are trivial and systematic names of organic compounds. Trivial names (such as acetone, toluene) have their origin in history or in nature. IUPAC takes care of a systematic nomenclature system in chemistry. The system of naming organic compounds according to IUPAC is illustrated below. Systematic names are built up by joining syllables according to the following rules: a) A syllable is used to denote the number of carbon atoms in the longest straight unbranched carbon chain in the compound. The number of carbon atoms thus formulates a saturated hydrocarbon (having only single bonds between carbon atoms) and the specific compound is regarded as a substituted hydrocarbon (using prefixes of functional groups, double bonds etc.). The longest straight carbon chain can be found by following the occurrences of carbon in the formula. The systematic syllables are: Number of Carbon Atoms Syllable (Saturated Hydrocarbon) 1 2 3 4 5 6 7 8 9 10 meth(ane) eth(ane) prop(ane) but(ane) pent(ane) hex(ane) hept(ane) oct(ane) non(ane) dec(ane) An ending is used to indicate the type of bond between the carbon atoms: Type of Bonds Single bonds Double bond Triple bond Ending –ane (for example ethane) –ene (for example ethene) –yne (for example ethyne) In one compound there can be more double or triple bonds. Example 1: Find the longest straight unbranched carbon chain in the following compound and name it: H3C CH2 CH2 CH2 C H3C CH3 CH2 CH3 What do we already know? We have found the longest unbranched carbon chain (highlighted by red colour and marked by numbers 1 – 7). The number of carbon atoms is seven; therefore, the name of the compound will be derived from heptane. All bonds in our compound are single bonds; therefore, the ending “-ane” in heptane is correct. H3C 7 CH2 6 CH2 5 CH2 4 H3C C CH3 3 CH2 2 CH3 1 The carbon atoms in the longest unbranched carbon chain are numbered by Arabic numerals. The numbers are placed so as to have the smallest number where the chain is branched (blue groups in our compound, carbon atom number 3). These two –CH3 groups are called functional groups. b) A syllable (prefix or ending) is used to indicate a functional group: Formula of a Functional Group –CnH2n+1 Functional Group Name alkyl group Prefix - Ending -yl -ol –C2H5 C2H5OH H3C hydroxy–OH Example alcohol O CH HO –CHO =CO –Cl –NH2 –NO2 aldehyde ketone chloride amino nitro –COOH carboxylic acid aldehydechloroaminonitro- -al -one -oic acid / carboxylic acid HCHO CH3COCH3 C2H5Cl CH3NH2 C6H5NO2 CH3COOH C -ethyl ethanol 2-hydroxypropanoic acid OH methanal propanone chloroethane aminomethane nitrobenzene ethanoic acid What do we already know? There are two methyl groups (functional groups) in position 3. Compounds with the same molecular formula but different structure (e.g. different position of functional groups) are called isomers. Therefore, it is important to mark the position of the functional group. Isomers usually have different chemical or physical properties. c) Greek prefixes are used to indicate the number of the same functional group(s), except for the monosubstituted compound. Number of Groups 1 2 3 4 5 Prefix monoditritetrapenta- Number of Groups 6 7 8 9 10 Prefix hexaheptaoctanonadeca- What do we already know? There are two methyl groups in the compound; therefore, the prefix is “di-” dimethylheptane. As has already been shown, Arabic numerals are used to denote the carbon atoms in the carbon chain to which functional groups are bonded. We know that two functional groups are in position 3; therefore, the name of the compound is 3,3-dimethylheptane. What does 3,3-dimethylheptane mean? How do we understand the name of this compound? The main (longest) carbon chain is “heptane”. It refers to a carbon chain with 7 atoms. The ending “-ane” indicates that all bonds between carbon atoms are single bonds. Then we know from “dimethyl” that two methyl groups are in the structure and that both are in position 3; therefore, twice 3 (“3,3”). d) Aromatic compounds Aromatic compounds without side chains have benzene as the root with the already mentioned prefixes and suffixes to indicate functional groups. The selected examples are in the following table: Structure Name nitrobenzene NO2 NO2 Structure 1,3-dinitrobenzene Cl COOH Name chlorobenzene benzene-1,2dicarboxylic acid COOH NO2 Example 2: Can you now name the following compound? H3C CH CH3 CH CH CH CH H3C Rules: 1) 2) 3) 4) 5) 6) Find the longest unbranched carbon chain. Number carbon atoms in the longest unbranched carbon chain and name the chain. Determine bonds between carbon atoms. Indicate a functional group/functional groups in the main chain. Indicate the number and position of functional group(s). Finally, name the compound. Solution: 1) The longest unbranched carbon chain is highlighted by red colour. H3C CH CH3 6 7 CH CH 4 5 CH CH 2 3 H3C 1 2) The numbered carbon atoms are shown above. The main syllable of hydrocarbon is “hept”, because it has 7 atoms. 3) Between C2 and C3, and C5 and C6 there are two double bonds – thus there is “di-” before “-ene”, i.e. “diene”. Moreover, numbers of the first atoms from where the double bond starts are used before the ending “diene”, i.e. “2,5-diene”. 4) The functional group in the main chain is a methyl group –CH3. 5) There is only one methyl group in position 4. 6) The name of the compound thus is 4-methylhepta-2,5-diene. Note: When the terminal ending (i.e. “diene” in our case) starts with a consonant, there is “-a” at the end of the hydrocarbon name (hepta). If there is just one double bond in position 2, the name of the compound would be 4methylhept-2-ene. Because the terminal ending (“-ene”) starts with a vowel, we do not have to add “-a” at the end of the hydrocarbon name. OVERVIEW OF HYDROCARBONS AND DERIVATIVES OF HYDROCARBONS Part A: Hydrocarbons Group Name Group Characteristics Name Selected Representatives Formula Properties H methane Alkanes Cycloalkanes Alkenes Alkynes Only single bonds between carbon atoms (General formula CnH2n+2) Cyclic alkanes (General formula CnH2n) At least one double bond between carbon atoms (General formula CnH2n) At least one triple bond between carbon atoms (General formula CnH2n-2) C H the simplest alkane; main component of natural gas H H octane very flammable; a component of gasoline (petrol) C8H18 cyclohexane can have different conformations – chair or boat ones ethene (ethylene) the simplest alkene; a plant hormone (causes ripening of fruits) ethyne (acelylene) C2H4 H C C H a linear symmetrical molecule; colourless gas; the simplest alkyne H Hydrocarbons with alternating Arenes double and (aromatic single bonds hydrocarbons) between carbon atoms forming ring(s) H benzene H C C C C C C H H planar structure; carcinogenic; liquid with a sweet smell H polycyclic aromatic hydrocarbon; white crystalline solid naphthalene Part B: Derivatives of Hydrocarbons Group Name Group Characteristics Selected Representatives Formula Properties Name H Haloalkanes (halogenoal kanes, alkyl halides) Containing one or more halogens (F, Cl, Br, I) chloroethane (ethyl chloride) H C H C H F C C F Amines Nitro compounds Alcohols Phenols (phenolics) Containing an amino functional group -NH2 Containing a nitro functional group -NO2 Containing a hydroxyl functional group -OH Containing a hydroxyl group bonded directly to an arene used as a local anesthetic in sports H F tetrafluoroethyl ene Cl F NH2 polytetrafluoroethylene (PTFE) - produced by its polymerization; also known as Teflon or Gore-Tex toxic organic compound with formula C6H5NH2, used in dye industry aniline CH3 TNT (trinitrotoluene) O2N NO 2 yellow-coloured solid; explosive material NO2 methanol CH3OH also known as wood alcohol; used to be produced as a byproduct of distillation of wood ethanol C2H5OH alcohol found in alcoholic beverages, produced by fermentation of sugars OH phenol crystalline volatile solid; an important industrial precursor to many materials Ethers Aldehydes Containing an oxygen atom connected to two alkyl or aryl groups R-O-R Containing an aldehyde functional group –CHO dimethyl ether the isomer of ethanol; colourless gas CH3-O-CH3 O acetaldehyde (ethanal) H3C occurs naturally in coffee, bread, and ripe fruit C O H C R Ketones H Containing a carbonyl functional group R-CO-R’ O O acetone (propanone) H3C C CH3 important solvent; used also for cleaning purposes in laboratories C R R' methanoic acid (formic) H Carboxylic acids Containing a carboxyl functional group -COOH O C R OH ethanoic acid (acetic) H O C part of vinegar C OH H butanoic acid (butyric) contained in insect stings and nettles HCOOH CH3(CH2)2COO H unpleasant smell and acrid taste; present in rotten butter COOH benzoic acid Esters Containing a functional group RCOOR’ O H ethyl formate C H5 C2 C R an aromatic carboxylic acid O rum odour (odorant) O OR' Notes: R and R’ represent a hydrogen atom (–H) or alkyl group (e.g. methyl –CH3, ethyl –C2H5 etc.) III. How to read chemical formulas in inorganic chemistry – examples Symbol AlBr3 English aluminium bromide AlCl3 aluminium chloride ND3 deutero ammonia Pronunciation ,ælju’miniəm ‘brəumaid ,ælju’miniəm ‘klo:raid ‚dju:tərə ə‘məuniə NH4CO2NH2 ammonium carbamate ammonium hydroxide ə‘məuniəm ‚ka:bəməit ə‘məuniəm hai‘droksaid NH4OH SbBr3 SbCl5 SbI3 Sb2O3 AsBr3 AsH3 BeI2 BiBr3 BBr3 CdO Ca(OH)2 CaCO3 Ca(HCO3)2 CO2 CO C3O2 CS2 COCl2 Cl2O ClO2 Cl2O6 Cl2O7 Cr(CO)6 antimony tribromide ‘æntiməni trai’brəumaid antimony ‘æntiməni pentachloride ,pentə’klo:raid antimony triiodide ‘æntiməni trai’aiədaid antimony trioxide ‘æntiməni trai’oksaid arsenic tribromide a:’s(ə)nik trai’brəumaid arsine ‘a:si:n beryllium iodide bə’riliəm ‘aiədaid bismuth tribromide ‘bizməɵ trai’brəumaid boron tribromide ‘bo:ron trai’brəumaid cadmium oxide ‘kædmiəm ‘oksaid calcium hydroxide ‘kælsiəm hai’droksaid calcium carbonate ‘kælsiəm ‘ka:bənit calcium hydrogen ‘kælsiəm ‘haidrədžən carbonate ‘ka:bənit carbon dioxide ‘ka:bən dai‘oksaid carbon monoxide ‘ka:bən mo‘noksaid carbon suboxide ‘ka:bən sab‘oksaid carbon disulphide ‘ka:bən dai’salfaid phosgene ‘fosdži:n chlorine monoxide ‘klo:ri:n mo‘noksaid chlorine dioxide ‘klo:ri:n dai‘oksaid dichlorine hexoxide dai‘klo:ri:n heks‘oksaid chlorine heptoxide ‘klo:ri:n hept‘oksaid chromium ‘krəumiəm hexacarbonyl ,heksə’ka:bənil Czech bromid hlinitý chlorid hlinitý deuteroamoniak, amoniak -3dkarbaminan amonný hydroxid amonný (vodný roztok amoniaku) bromid antimonitý chlorid antimoničný jodid antimonitý oxid antimonitý bromid arsenitý arzenovodík/arzan jodid berylnatý bromid bizmutitý bromid boritý oxid kademnatý hydroxid vápenatý uhličitan vápenatý hydrogenuhličitan vápenatý oxid uhličitý oxid uhelnatý suboxid uhlíku sirouhlík fosgen oxid chlorný oxid chloričitý dimer oxidu chlorového oxid chloristý hexakarbonyl chromu CrO2Cl2 CoCl2 Cu2Br2 chromyl chloride cobaltous chloride cuprus bromide ‘krəumil ‘klo:raid kəu’bo:ltəs ‘klo:raid ‘kju:prəs ‘brəumaid FeCl3 FeCl2 HCl (g) HCl (aq) ferric chloride ferrous chloride hydrogen chloride hydrochloric acid ‘ferik ‘klo:raid ‘ferəs ‘klo:raid ‘haidrədžən ‘klo:raid ‘haidrəu’klo:rik ‘æsid HF (g) HF (aq) hydrogen fluoride hydrofluoric acid ‘haidrədžən ‘fluəraid ‘haidrəu’fluorik ‘æsid H2O2 hydrogen peroxide H2S hydrogen sulphide ‘haidrədžən pə’roksaid ‘haidrədžən ‘salfaid PbS LiOH MnCl2 HgCl2 NO N 2O N2O4 lead sulphide lithium hydroxide manganous chloride mercuric chloride nitric oxide nitrous oxide dinitrogen tetroxide NOCl PH3 PH4Cl SiH4 SiO2 AgCl NaBr NaHCO3 nitrosyl chloride phosphine phosphonium chloride silane silicon dioxide silver chloride sodium bromide bicarbonate Na2CO3 NaCl NaOH sodium carbonate sodium chloride sodium hydroxide SO2 SO3 H2SO4 H2O sulphur dioxide sulphur trioxide sulphuric acid water ‘led ‘salfaid ‘liɵiəm hai’droksaid ‘mængenəs ‘klo:raid mə:’kjuərik ‘klo:raid ‘naitrik ‘oksaid ‘naitrəs ‘oksaid dai’naitrədžən tet‘roksaid ‘naitrəsil ‘klo:raid ‘fosfi:n fos’fəuniəm ‘klo:raid ‘sailein ‘silikən dai‘oksaid ‘silvə ‘klo:raid ‘səudiəm ‘brəumaid bai’ka:bənit ‘səudiəm ’ka:bənit ‘səudiəm ‘klo:raid ‘soudiəm hai’droksaid ‘salfə dai‘oksaid ‘salfə trai‘oksaid sal’fjuərik ‘æsid ‘wo:tə chromylchlorid chlorid kobaltnatý dimer bromidu měďného chlorid železitý chlorid železnatý chlorovodík kyselina chlorovodíková fluorovodík kyselina fluorovodíková peroxid vodíku sulfan (dříve sirovodík) sulfid olovnatý hydroxid lithný chlorid manganatý chlorid rtuťnatý oxid dusnatý oxid dusný dimer oxidu dusičitého nitrosylchlorid fosfan fosfonium chlorid silan oxid křemičitý chlorid stříbrný bromid sodný hydrogenuhličitan sodný uhličitan sodný chlorid sodný hydroxid sodný oxid siřičitý oxid sírový kyselina sírová voda IV. How to read chemical formulas in organic chemistry – examples English dichlormethane formaldehyde formic acid methane methanol methylamine acetylene acetonitrile ethylene acetaldehyde acetic acid ethylamine acetone propane propene propylene propyne propyl acetate ethylacetate butane butyl alcohol diethylene glycol diethyl sulphate diethyl sulphite diethyl sulphide isobutylamine amyl alcohol hexachlorobenzene pentachlorobenzene benzene chloroaniline nitroaniline phenol aniline hexene hexane hexanol benzonitrile benzaldehyde benzoic acid toulene benzyl alcohol Pronunciation dai’klo:rəu’mi:ɵein fo:‘mældəhaid ‘fo:mik ‘æsid ‘mi:ɵein ‘meɵənol ‘mi:ɵail’æmi:n ə‘setili:n ‘æsitəu’naitrail ‘eɵili:n ‘æsət’ældihaid ə’si:tik ‘æsid i:ɵail ‘əmi:n ‘æsitəun ‘prəupein ‘prəupi:n ‘prəupili:n ‘prəupain ‘prəupil ‘æsitit ‘eɵail ‘æsitit ‘bju:tein ‘bju:til ‘ælkəhol dai’eɵili:n ‘glaikəul dai’i:ɵail ‘salfeit dai’i:ɵail ‘salfait dai’i:ɵail ‘salfaid ,aisəu’bju:til,əmi:n ‘æmil ‘ælkəhol ,heksə’klo:rəu’benzi:n ,pentə’klo:rəu’benzi:n ‘benzi:n ‘klo:rəu’ænilain ‘naitrəu’ænilain ‘fi:nol ‘ænilain ‘heksi:n ‘heksein ‘heksənəul ‘benzəu’naitrail (-ril) ‘benz’ældəhaid ben’zoik’æsid ‘toljui:n ‘benzil ‘ælkəhol Czech dichlormethan formaldehyd kyselina mravenčí metan metanol metylamin acetylen acetonitril ethylen acetaldehyd kyselina octová ethylamin aceton propan propen propylen propyn propylacetát octan ethylnatý butan butylalkohol diethylenglykol diethylsulfát diethylsulfit diethylsulfid isobutylamin amylalkohol hexachlorbenzen pentachlorbenzen benzen chloranilin nitroanilin fenol anilin hexen hexan hexanol benzonitril benzaldehyd kyselina benzoová toulen benzylalkohol heptane styrene ethylbenzene caprilic acid octane propylbenzene isopropylbenzene benzyl acetate nonane naphtalene butylbenzene tert. butylbenzene ethyl benzoylacetate biphenyl fluorene benzophenone anthracene benzil ‘heptein ‘stairi:n ‘i:ɵail’benzi:n kæp’rilik ‘æsid ‘oktein ‘prəupail ‘benzi:n ,aisəu’prəupail ‘benzi:n ‘benzil ‘æsitit (-eit) ‘nəunein næftəli:n ‘bju:tail’benzi:n ‘tə:šəri ‘bju:tail’benzi:n ‘i:ɵail ‘benzoil’æsitit bai’fi:nail ‘fluəri:n ‘benzəu’fi:nəun ‘ænɵrəsi:n ‘benzil heptan styren ethylbenzen kyselina kaprylová oktan propylbenzen isopropylbenzen benzylacetát nonan naftalen butylbenzen terc. butylbenzen benzoylacetát ethylnatý difenyl fluoren benzofenon anthracen benzyl V. Notes on reading chemical formulas 1) If the symbol of the element is preceded by a number, the number may indicate molecules or moles, e.g. 2 H2O - two molecules /´molekjulz/ of H2O or - two moles /´məulz/ of H2O 2) Signs + and – express the positive or negative valence of the ion, e.g. H+ - univalent positive hydrogen ion [juni´veilənt ´pozitiv ´aiən] jednomocný kladný iont (kation) vodíku 2+ Cu - divalent positive copper ion [dai´veilənt …..] dvoumocný kladný iont mědi /měďnatý kation Al3+ - trivalent positive aluminium ion [trai´veilənt …..] trojmocný kladný iont hliníku Cl - univalent negative chlorine ion [juni´veilənt ´negətiv ´klo:ri:n …..] jednomocný záporný iont chlóru / chloridový anion 3) Higher valence is expressed by the following prefix + the word “valent“. The prefix is always stressed: tetra tetravalent [,tetrə´veilənt] čtyřmocný penta pentavalent [,pentə ´veilənt] pětimocný hexa hexavalent [,heksə ´veilənt] šestimocný hepta heptavalent [,heptə ´veilənt] sedmimocný octa octavalent [,oktə´veilənt] osmimocný 4) Sign NH2 expresses a bond between atoms and is not read: bond between nitrogen and carbon atoms CH3 5) Sign + stands for Sign = stands for Sign stands for Sign stands for plus together with give(s) form(s) give(s) pass(es) over to lead(s) to form(s) is/are formed equilibrium plus spolu, s dávají, dá tvoří dávají, dá přecházejí do, přechází do vedou k, vede k tvoří tvoří se, vznikne, vzniknou je v rovnováze 6) Among chemists, there is no general agreement on how to pronounce some of the frequent suffixes in chemical compounds, although some dictionaries will offer good guidance. Also, pronunciation in AE and BE can differ and may even vary from laboratory to laboratory. The most frequent pronunciation of suffixes is as follows: Suffix - ene - ane [- i:n] e.g. ethene [´i:ɵi:n], acetylene [´æsətili:n], fluorine [´fluəri:n], toluene [´tolui:n], napthalene [´nefɵəli:n], benzene [´benzi:n], ethylene [´eɵili:n] [- ein] e.g. ethane [´i:ɵein], butane [´bju:tein], propane [´prəupein], [´mi:ɵein] methane - ite [- ait] e.g. fluorite [´fluərait], chloride [´klo:raid], sulphite [´salfait] - yl [- il] and often [- ail] e.g. amyl [´aemil/ ´æmail], benzyl [´benzil/ ´benzail]; methyl [´meɵil/ ´meɵail], ethyl [´eɵil/ ´eɵail] -ine -ide [- i:n] and often [- ain] e.g. pyridine [´piridi:n], fluorine [´fluəri:n], phosphine [´fosfi:n], iodine [´aiədi:n] ethylamine [´i:ɵil´əmi:n], bromine[´brəumi:n], chlorine [´klo:ri:n], benzine [´benzi:n] aniline [´ænilain], methylamine [´mi:ɵail´əmi:n] Note that with some names identical pronunciation may be confusing: benzine x benzene [´benzi:n] fluorine x fluorene [´fluəri:n] [- aid] and also [- i:d] e.g. hydride [´haidraid], chloride [´klo:raid], iodide [´aiədaid], peroxide [pər´oksaid], sulphide [´salfaid], oxide [´oksaid], bromide [´brəumaid], hydroxide[,haidr´oksaid], sacharide [´sækəraid], fluoride [´fluəri:d], nitramide [´naitrəmi:d], trifluoride[/,trai‘fluəri:d] -ate [- eit] and also [- it] acetate [´æsəteit], perchlorate [,per´klo:reit], dichromate [dai´krəumeit], carbonate [´ka:boneit], sulphate [´salfeit] 7) The first syllable is stressed if there is no prefix: e.g: cadmium [´cædmiəm], acetate [´æsəteit] 8) Unstressed syllables are often pronounced in full, i.e. they are not reduced: e.g. phenol [´fi:nol], boron [´bo:ron] 9) The vowel preceding the following prefixes – acic, - alic, - anic, - aric, - elic, - enic, -eric, etic, -idic, -ilic, -inic, -isic, -onic, - opic, - oric is usually short, and stress is on the syllable preceding – ic. e.g. chloric [´klorik] but: acetic [ ´əsi:tik], ceric [´si:rik] VI. Some abbreviations in common use in chemistry Symbol a. acet. a. al. amor. , amorph. anh. aq. at. no. at. wt. b. p. conc. d., dec. dil. dist. evap. i., insol. liq. p. sol. r.m.m. sol. English acid acetic acid alcohol amorphous anhydrous aqua aqueous water atomic number atomic weight boiling point concentrated decompose dilute distilled evaporation insoluble liquid partly soluble relative molecular mass soluble Pronunciation ‘æsid ə‘si:tik ‘æsid ‘ælkəhol ə‘mo:fəs æn‘haidrəs ‘ækwə ‘eikwiəs ‘wo:tə ə‘tomik ‘nambə ə‘tomik ‘weit ‘boiliɳ ‘point ‘konsen,treitid ,di:kəm‘pəuz dai’lju:t dis’tild i,væpə‘reišən in’soljubl ‘likwid ‘pa:tli ‘soljubl ‚relətiv mə‘lekjulə ‚mæs ‘soljubl Czech kyselina kyselina octová alkohol amorfní bezvodý vodný voda atomové číslo atomová váha bod varu koncentrovaný rozložit ředit destilovaný vypařování nerozpustný tekutý, kapalný částečně rozpustný relativní molekulová hmotnost rozpustný sp. wt. subl. m.p. vac. 20°C specific weight sublime melting point vacuum twenty degrees Celsius above below soluble in all proportions spə‘sifik ‘weit sə‘blaim ‘meltiɳ ‘point ‘vækjuəm ‘twenti di’gri:z ‘selziəs ə‘bav bi‘ləu ‘soljubl in ‘o:l prə‘po:šənz specifická váha sublimovat bod tání vakuum 20°C výše níže rozpustný v jakémkoli poměru