Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 210Q Practice Exam 3 SOLUTIONS Name: Directions: Show all of your work and clearly indicate your answers. Correct answers with no work may not receive credit. 1. Calculate the iterated integrals Z 2Z 2 a. (y + 2xey ) dx dy 1 0 = b. Z 1 0 Z c. π 0 2 1 (2y + 4ey ) dy = 3 + 4e2 − 4e x cos(x2 ) dy dx 0 = Z Z Z 1 0 Z √1−y2 Z 1 cos(x2 ) x dx = 0 1 1 1 sin(x2 ) = sin(1) 0 2 2 y sin(x) dz dy dx 0 = Z π 0 Z 1 0 Z p sin(x) y 1 − y 2 dy dx = = 2. Evaluate π 0 sin(x) dx · Z 1 y 0 p 1 − y 2 dy π 1 2 3/2 1 2 − cos(x) · − 1 − y2 = 2 3 3 0 0 Z Z xy dA, where D = {(x, y) : 0 ≤ y ≤ 1, y 2 ≤ x ≤ y + 2}. D Z 1 Z y+2 Z 1 41 1 3 2 5 = xy dx dy = y + 4y + 4y − y dy = 24 0 y2 0 2 √ y dA, where D is bounded by y = x, y = 0, x = 1. 2 D 1+x Z 1 Z √x Z 1 1 y x 1 1 1 2 = dy dx = dx = ln(1 + x ) = ln(2) 1 + x2 2 0 1 + x2 4 4 0 0 0 3. Evaluate Z Z 1 Z 1 Z 1 4. Calculate the iterated integral: cos(y 2 ) dy dx. [Change order of integration.] 0 x Z 1Z y Z 1 1 1 1 2 = cos(y ) dx dy = cos(y 2 ) · y dy = sin(y 2 ) = sin(1) 2 2 0 0 0 0 1 2 1 yex dx dy. [Change order of integration.] 5. Calculate the iterated integral: √ x3 0 y Z 1 Z x2 Z 1 x2 Z 1 x2 2 yex y 2 x2 x4 e e = dy dx = · · dx dx = x3 x3 2 0 x3 2 0 0 0 0 Z 1 2 1 1 1 1 x2 e x dx = ex = (e − 1) = 2 0 4 4 0 Z Z 6. Find the volume of the solid under the paraboloid z = x2 + 4y 2 and above the rectangle R = [0, 2] × [1, 4]. Z 4 Z 4Z 2 8 528 2 2 2 (x + 4y ) dx dy = + 8y = 176 dy = = 3 3 1 0 1 7. Calculate the volume of the solid under the surface z = x2 y that lies above the triangle in the xy-plane with vertices (1, 0), (2, 1) and (4, 0). [Warning: tedious algebra ahead.] Z Z 1 Z −2y+4 53 1 1 2 4 3 2 = x y dx dy = − 9y + 45y − 99y + 63y dy = 3 0 20 0 y+1 Alternatively, Z 4 Z − x +2 Z 2 Z x−1 2 31 32 53 2 x y dy dx + = x2 y dy dx = + = 60 15 20 2 0 1 0 8. Evaluate Z Z p x2 + y 2 dA, where D is the region in the first quadrant bounded by the D circle x2 + y 2 = 2 and the x− and the y−axes. = 9. Evaluate x2 + y 2 = 9. Z Z Z π 2 0 Z √ 2 0 √ √ √ π 2 r 3 2 π2 2 2 π · = r · r dr dθ = · θ = 3 0 3 2 3 0 x dA, where D is the region above the x-axis bounded by the circle D = Z π 0 Z 3 0 r cos(θ) · r dr dθ = 2 π r 3 3 · sin(θ) = 9 · 0 = 0 3 0 0 10. Calculate the volume of the solid bounded by the cylinder x2 + y 2 = 4 and the planes z = 0 and y + z = 3. = Z 2π 0 Z 2 0 3−r sin(θ) · r dr dθ = = Z Z Z 11. Evaluate = Z 3 0 Z x Z 0 12. Evaluate 2π Z 0 8 12π + 3 2 0 2 3r−r sin(θ) dr dθ = 8 − 0+ 3 Z 2π 0 8 6 − sin(θ) 3 dθ = 12π xy dV , where E = {(x, y, z) : 0 ≤ x ≤ 3, 0 ≤ y ≤ x, 0 ≤ z ≤ x + y}). E x+y xy dz dy dx = 0 Z Z Z Z Z 3 0 Z x 2 2 (x y + xy ) dy dx = 0 Z 3 1 3 81 5 4 x dx = x5 = 0 6 6 2 0 z dV , where E is the solid region bounded by the planes z = 0, E z = 1 + x + y, and the cylinder x2 + y 2 = 1 in the first octant. [ Warning : highly involved and technical algebra here.] = Z Z Z D 1+x+y z · dz dA = 0 = = 1 2 Z π 2 0 Z 1 0 π 2 Z π 2 0 Z 1 0 Z π 2 0 Z 1 0 Z 1+r(cos(θ)+sin(θ)) z · r dz dr dθ 0 2 1 1 + r(cos(θ) + sin(θ)) · r dr dθ 2 r + 2r 2 (cos(θ) + sin(θ)) + r 3 (cos(θ) + sin(θ))2 dr dθ 1 2 1 + (cos(θ) + sin(θ)) + (1 + cos(θ) sin(θ)) dθ 2 3 4 0 π2 2 1 3π 19 1 1 1 2 θ + (sin(θ) − cos(θ)) + + = θ + sin (θ) = 2 2 3 4 2 16 24 1 = 2 Z 0 13. Find the volume of the solid inside the cylinder x2 + y 2 = 4 under the paraboloid z = x2 + y 2 and above the plane z = 0. = Z Z Z D x2 +y 2 1 dz dA = 0 Z 2π 0 Z 2 0 Z r2 0 4 1 · r dz dr dθ = 2π r 2 = · θ = 8π 4 0 0 3 Z 2π 0 Z 2 r 3 dr dθ 0 14. Evaluate Z Z Z (x2 + y 2 ) dV , where E is the solid region above the xy-plane between E the spheres x2 + y 2 + z 2 = 1 and x2 + y 2 + z 2 = 4. = Z π 2 0 Z 2π Z 0 2 1 ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ · ρ2 sin φ dρ dθ dφ Z = π 2 Z 0 2π 0 Z 2 ρ4 sin3 φ dρ dθ dφ 1 2π Z π/2 ρ5 2 2 124π 31 = · 2π · = sin3 φ dφ = ·θ · 5 1 5 3 15 0 0 To evaluate the last integral, do the following: Z π/2 3 sin φ dφ = 0 Z π/2 2 (1 − cos φ) sin φ dφ = 0 = 15. Evaluate Z Z Z y2 E Z π/2 0 sin φ − cos2 φ sin φ dφ 1 π/2 2 3 − cos φ + cos φ = 0 3 3 p x2 + y 2 + z 2 dV , where E is the solid region in the first octant inside the sphere x2 + y 2 + z 2 = 1. = Z π 2 Z 0 π 2 0 Z = = 1 6 = ρ 6 Z Z 1 0 π 2 0 Z ρ2 sin2 φ sin2 θ · ρ · ρ2 sin φ dρ dθ dφ 0 π 2 Z 1 5 0 ρ dρ · 1 ρ5 sin3 φ sin2 θ dρ dθ dφ 0 Z π 2 1 6 To evaluate the third integral, see above. π/2 2 sin θ dθ = 0 sin θ dθ · 0 Z π 2 sin3 φ dφ 0 1 π/2 π/2 1 1 1 3 · θ − sin(2θ) · − cos φ + cos φ 2 4 3 0 0 0 2 π = 3 36 do the second, use the half-angle identity: 1 1 1 π/2 π 1 − cos(2θ) θ dθ = θ − sin(2θ) = 2 2 2 0 4 = Z 2 Z π/2 0 π 4 To · · 4 16. Find the area of the cardioid r = 4 + 3 cos(θ). 4 3 2 1 0 2 4 6 0 −1 −2 −3 −4 Area = ZZ 1 = 2 1 dA = D Z 2π 0 Z 2π 0 Z 4+3 cos θ r drdθ = 0 Z 2π 0 1 + cos 2θ 16 + 24 cos θ + 9 · 2 1 (4 + 3 cos θ)2 dθ 2 dθ = 41π . 2 17. Find the area of one petal of the polar rose r = cos(3θ). For this problem, it is important to get your bounds right. It is easy to see that 0 ≤ r ≤ cos(3θ). To find the bounds for θ, we look at the graph of the curve. 0.75 0.5 0.25 0.0 −0.5 −0.25 0.0 0.25 0.5 0.75 1.0 −0.25 −0.5 −0.75 We want only one petal, so we need to find an interval of θ values where r starts at zero and then goes back to zero. That is, we need to find the angles θ where r = 0 and our range will be the interval between two consecutive such θ values. Consider cos(t). We know that cos(t) = 0 when t = − π2 , π2 , 3π , 5π , · · · . In our case, t = 3θ, 2 2 π π 3π 5π so we have θ = − 6 , 6 , 6 , 6 , · · · . The petal on the right is the one where θ goes from − π6 to π6 , so we will use this interval for θ. (You can use any consecutive θ values, however.) Therefore, Area = ZZ 1 dA = D Z π 6 − π6 Z cos(3θ) r drdθ = 0 Z π 6 − π6 5 1 (cos 3θ)2 dθ = 2 Z π 6 − π6 π 1 (1 + cos 6θ) dθ = . 4 12 p 18. Find the volume of the solid region bounded below by the cone z = x2 + y 2 and above by the sphere x2 + y 2 + z 2 = 1. (This region is sometimes called an ice cream cone.) Volume = ZZZ 1 dV = E Z π/4 0 Z 2π 0 Z 1 ρ2 sin φ dρ dθ dφ 0 π/4 2π ρ3 1 2π = · θ · − cos φ = 3 0 3 0 0 6 √ 2 +1 − 2 !