Download answers - Oscar Levin

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 210Q
Practice Exam 3
SOLUTIONS
Name:
Directions: Show all of your work and clearly indicate your answers. Correct answers with
no work may not receive credit.
1. Calculate the iterated integrals
Z 2Z 2
a.
(y + 2xey ) dx dy
1
0
=
b.
Z
1
0
Z
c.
π
0
2
1
(2y + 4ey ) dy = 3 + 4e2 − 4e
x
cos(x2 ) dy dx
0
=
Z
Z
Z
1
0
Z √1−y2
Z
1
cos(x2 ) x dx =
0
1 1
1
sin(x2 ) = sin(1)
0
2
2
y sin(x) dz dy dx
0
=
Z
π
0
Z
1
0
Z
p
sin(x) y 1 − y 2 dy dx =
=
2. Evaluate
π
0
sin(x) dx ·
Z
1
y
0
p
1 − y 2 dy
π 1 2 3/2 1 2
− cos(x) · −
1 − y2
=
2 3
3
0
0
Z Z
xy dA, where D = {(x, y) : 0 ≤ y ≤ 1, y 2 ≤ x ≤ y + 2}.
D
Z 1 Z y+2
Z 1 41
1 3
2
5
=
xy dx dy =
y + 4y + 4y − y dy =
24
0
y2
0 2
√
y
dA, where D is bounded by y = x, y = 0, x = 1.
2
D 1+x
Z 1 Z √x
Z
1 1
y
x
1 1
1
2 =
dy dx =
dx = ln(1 + x ) = ln(2)
1 + x2
2 0 1 + x2
4
4
0
0
0
3. Evaluate
Z Z
1
Z
1
Z
1
4. Calculate the iterated integral:
cos(y 2 ) dy dx. [Change order of integration.]
0
x
Z 1Z y
Z 1
1 1
1
2
=
cos(y ) dx dy =
cos(y 2 ) · y dy = sin(y 2 ) = sin(1)
2
2
0
0
0
0
1
2
1
yex
dx dy. [Change order of integration.]
5. Calculate the iterated integral:
√
x3
0
y
Z 1 Z x2
Z 1 x2
Z 1 x2
2
yex
y 2 x2
x4
e
e
=
dy
dx
=
·
·
dx
dx
=
x3
x3 2 0
x3 2
0
0
0
0
Z
1 2 1 1
1 1 x2
e x dx = ex = (e − 1)
=
2 0
4
4
0
Z
Z
6. Find the volume of the solid under the paraboloid z = x2 + 4y 2 and above the rectangle
R = [0, 2] × [1, 4].
Z 4
Z 4Z 2
8
528
2
2
2
(x + 4y ) dx dy =
+ 8y
= 176
dy =
=
3
3
1
0
1
7. Calculate the volume of the solid under the surface z = x2 y that lies above the triangle
in the xy-plane with vertices (1, 0), (2, 1) and (4, 0). [Warning: tedious algebra ahead.]
Z
Z 1 Z −2y+4
53
1 1
2
4
3
2
=
x y dx dy =
− 9y + 45y − 99y + 63y dy =
3 0
20
0
y+1
Alternatively,
Z 4 Z − x +2
Z 2 Z x−1
2
31 32
53
2
x y dy dx +
=
x2 y dy dx =
+
=
60 15
20
2
0
1
0
8. Evaluate
Z Z
p
x2 + y 2 dA, where D is the region in the first quadrant bounded by the
D
circle x2 + y 2 = 2 and the x− and the y−axes.
=
9. Evaluate
x2 + y 2 = 9.
Z Z
Z
π
2
0
Z
√
2
0
√
√
√
π 2
r 3 2 π2
2 2 π
· =
r · r dr dθ = · θ =
3 0
3
2
3
0
x dA, where D is the region above the x-axis bounded by the circle
D
=
Z
π
0
Z
3
0
r cos(θ) · r dr dθ =
2
π
r 3 3
· sin(θ) = 9 · 0 = 0
3 0
0
10. Calculate the volume of the solid bounded by the cylinder x2 + y 2 = 4 and the planes
z = 0 and y + z = 3.
=
Z
2π
0
Z
2
0
3−r sin(θ) · r dr dθ =
=
Z Z Z
11. Evaluate
=
Z
3
0
Z
x
Z
0
12. Evaluate
2π
Z
0
8
12π +
3
2
0
2
3r−r sin(θ) dr dθ =
8
− 0+
3
Z
2π
0
8
6 − sin(θ)
3
dθ
= 12π
xy dV , where E = {(x, y, z) : 0 ≤ x ≤ 3, 0 ≤ y ≤ x, 0 ≤ z ≤ x + y}).
E
x+y
xy dz dy dx =
0
Z Z Z
Z
Z
3
0
Z
x
2
2
(x y + xy ) dy dx =
0
Z
3
1 3 81
5 4
x dx = x5 =
0
6
6
2
0
z dV , where E is the solid region bounded by the planes z = 0,
E
z = 1 + x + y, and the cylinder x2 + y 2 = 1 in the first octant. [ Warning : highly involved
and technical algebra here.]
=
Z Z Z
D
1+x+y
z · dz dA =
0
=
=
1
2
Z
π
2
0
Z
1
0
π
2
Z
π
2
0
Z
1
0
Z
π
2
0
Z
1
0
Z
1+r(cos(θ)+sin(θ))
z · r dz dr dθ
0
2
1
1 + r(cos(θ) + sin(θ)) · r dr dθ
2
r + 2r 2 (cos(θ) + sin(θ)) + r 3 (cos(θ) + sin(θ))2 dr dθ
1 2
1
+ (cos(θ) + sin(θ)) + (1 + cos(θ) sin(θ)) dθ
2 3
4
0
π2
2
1
3π 19
1 1
1 2 θ + (sin(θ) − cos(θ)) +
+
=
θ + sin (θ) =
2 2
3
4
2
16 24
1
=
2
Z
0
13. Find the volume of the solid inside the cylinder x2 + y 2 = 4 under the paraboloid
z = x2 + y 2 and above the plane z = 0.
=
Z Z Z
D
x2 +y 2
1 dz dA =
0
Z
2π
0
Z
2
0
Z
r2
0
4
1 · r dz dr dθ =
2π
r 2
=
· θ = 8π
4 0
0
3
Z
2π
0
Z
2
r 3 dr dθ
0
14. Evaluate
Z Z Z
(x2 + y 2 ) dV , where E is the solid region above the xy-plane between
E
the spheres x2 + y 2 + z 2 = 1 and x2 + y 2 + z 2 = 4.
=
Z
π
2
0
Z
2π
Z
0
2
1
ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ · ρ2 sin φ dρ dθ dφ
Z
=
π
2
Z
0
2π
0
Z
2
ρ4 sin3 φ dρ dθ dφ
1
2π Z π/2
ρ5 2
2
124π
31
=
· 2π · =
sin3 φ dφ =
·θ ·
5 1
5
3
15
0
0
To evaluate the last integral, do the following:
Z
π/2
3
sin φ dφ =
0
Z
π/2
2
(1 − cos φ) sin φ dφ =
0
=
15. Evaluate
Z Z Z
y2
E
Z
π/2
0
sin φ − cos2 φ sin φ dφ
1
π/2 2
3
− cos φ + cos φ =
0
3
3
p
x2 + y 2 + z 2 dV , where E is the solid region in the first octant
inside the sphere x2 + y 2 + z 2 = 1.
=
Z
π
2
Z
0
π
2
0
Z
=
=
1 6
=
ρ
6
Z
Z
1
0
π
2
0
Z
ρ2 sin2 φ sin2 θ · ρ · ρ2 sin φ dρ dθ dφ
0
π
2
Z
1
5
0
ρ dρ ·
1
ρ5 sin3 φ sin2 θ dρ dθ dφ
0
Z
π
2
1
6
To evaluate the third integral, see above.
π/2
2
sin θ dθ =
0
sin θ dθ ·
0
Z
π
2
sin3 φ dφ
0
1 π/2 π/2
1
1
1
3
· θ − sin(2θ)
· − cos φ + cos φ
2
4
3
0
0
0
2
π
=
3
36
do the second, use the half-angle identity:
1
1
1
π/2 π
1 − cos(2θ) θ dθ =
θ − sin(2θ) =
2
2
2
0
4
=
Z
2
Z
π/2
0
π
4
To
·
·
4
16. Find the area of the cardioid r = 4 + 3 cos(θ).
4
3
2
1
0
2
4
6
0
−1
−2
−3
−4
Area =
ZZ
1
=
2
1 dA =
D
Z
2π
0
Z
2π
0
Z
4+3 cos θ
r drdθ =
0
Z
2π
0
1 + cos 2θ
16 + 24 cos θ + 9 ·
2
1
(4 + 3 cos θ)2 dθ
2
dθ =
41π
.
2
17. Find the area of one petal of the polar rose r = cos(3θ).
For this problem, it is important to get your bounds right. It is easy to see that 0 ≤ r ≤
cos(3θ). To find the bounds for θ, we look at the graph of the curve.
0.75
0.5
0.25
0.0
−0.5
−0.25
0.0
0.25
0.5
0.75
1.0
−0.25
−0.5
−0.75
We want only one petal, so we need to find an interval of θ values where r starts at zero
and then goes back to zero. That is, we need to find the angles θ where r = 0 and our range
will be the interval between two consecutive such θ values.
Consider cos(t). We know that cos(t) = 0 when t = − π2 , π2 , 3π
, 5π
, · · · . In our case, t = 3θ,
2
2
π π 3π 5π
so we have θ = − 6 , 6 , 6 , 6 , · · · . The petal on the right is the one where θ goes from − π6
to π6 , so we will use this interval for θ. (You can use any consecutive θ values, however.)
Therefore,
Area =
ZZ
1 dA =
D
Z
π
6
− π6
Z
cos(3θ)
r drdθ =
0
Z
π
6
− π6
5
1
(cos 3θ)2 dθ =
2
Z
π
6
− π6
π
1
(1 + cos 6θ) dθ = .
4
12
p
18. Find the volume of the solid region bounded below by the cone z = x2 + y 2 and above
by the sphere x2 + y 2 + z 2 = 1. (This region is sometimes called an ice cream cone.)
Volume =
ZZZ
1 dV =
E
Z
π/4
0
Z
2π
0
Z
1
ρ2 sin φ dρ dθ dφ
0
π/4 2π
ρ3 1 2π =
· θ · − cos φ =
3 0
3
0
0
6
√
2
+1
−
2
!
Related documents