Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 6. Processes Resulting from the Intensity-Dependent Refractive Index - Optical phase conjugation - Self-focusing - Optical bistability - Two-beam coupling - Optical solitons - Photorefractive effect (Chapter 10) : cannot be described by a nonlinear susceptibility c(n) for any value of n Reference : R.W. Boyd, “Nonlinear Optics”, Academic Press, INC. Nonlinear Optics Lab. Hanyang Univ. 6.4 Two-Beam Coupling : Under certain condition, energy is transferred from one beam to the other Refractive index experienced by either wave is modified by the intensity of the other wave Total optical field : ~ E(r,t )A1ei (k1r1t ) A2ei (k 2r2t ) c.c. ki n0i c I moving grating n0 c ~ 2 E 4 n0 c A1A1* A 2 A*2 A1A*2ei (k1 k 2 )r i (1 2 )t ) c.c 2 nc q k 1 k 2 : grating wave vector 0 A1A1* A 2 A*2 A1A*2 ei (qr t ) c.c where, 2 1 2 : frequency difference I Nonlinear Optics Lab. Hanyang Univ. Special case (q=180 degree) q2k 2 I n0 c A1A1* A 2 A*2 A1A*2 ei ( 2 k z t ) c.c 2 0 0 Phase velocity : v| |/2k Nonlinear Optics Lab. Hanyang Univ. Theoretical treatment Nonlinear refractive index considering the dynamic response (Debye relaxation equation) : dnNL nNL n2 I dt Solution : nNL n2 t I(t )e (t t ) dt Ex) I(t ')e it t e it ( t t ) e dt e t t e ( i 1) t e it dt i 1 n0 n2c A1A*2ei (qrt ) A1*A 2e i (qrt ) * * nNL A1A1 A 2 A 2 2 1i 1i Wave equation : 2 2~ n E ~ 2E 2 2 0 c t nNL n0 where, n n0 nNL and n 2 n02 2n0 nNL Nonlinear Optics Lab. Hanyang Univ. 2 n02 2 n02 n2 22 n02 n212 A1 A 2 d 2A2 dA 2 2 2 2 2ik 2 k 2 A 2 2 A 2 A1 A 2 A 2 dz 2 dz c c c 1i stationary index time-varying index 2 n n n n A1 A 2 dA 2 2 2 i 0 2 A1 A 2 A 2 i 0 2 dz 2 2 1 i d I 2 n0 c * dA 2 dA*2 A 2 A 2 dz 2 dz dz Ii where, 1 2 2n2 II 2 2 1 2 c 1 : when >0 (1<1) I2 increases with z n0 c A i A*i 2 Maximum gain ; dI 2 n2 I1I 2 dz c when 1 Nonlinear Optics Lab. Hanyang Univ. # There is no energy coupling if 0 i) 0 (nonlinearity has a fast response) ii) 1 2 0 (input waves are at the same frequency) Two-beam coupling can occur in certain photorefractive crystal even between beams of the same frequency. In such case, energy transfer occurs as a result of a spatial phase shift between the nonlinear index grating and the optical intensity distribution. Nonlinear Optics Lab. Hanyang Univ. 6.5 Pulse Propagation and Optical Solitons Optical solitons : Under certain condition, an exact cancellation of group velocity dispersion can occur by a nonlinear optical process so called self-phase modulation. Self-Phase Modulation ~ ~ Optical pulse : E ( z, t ) A( z, t )ei ( k0 z 0t ) c.c. Refractive index of 3rd order nonlinear medium : n(t )n0 n2 I (t ), I (t ) 2 n0 c ~ A( z,t ) 2 Phase change by nonlinear refractive index : NL (t )n2 I (t )0 L c Frequency change : d dt (t ) NL (t ) n2 0 L dI (t ) c dt Nonlinear Optics Lab. Hanyang Univ. Example Pulse shape : I (t ) I 0 sech 2 (t 0 ) Nonlinear phase shift : NL (t )n2 0 c LI 0 sech 2 (t 0 ) Frequency shift : d (t ) NL (t ) dt 2n2 0 c 0 LI 0 sech 2 (t 0 )tan h (t 0 ) # Maximum frequency shift : max max NL 0 max , NL n2 0 c I0L : Whenever max exceeds the spectral width of the max 2 , incident pulse (~2/0), that is NL the spectral broadening due to self-phase modulation will be important. Nonlinear Optics Lab. Hanyang Univ. Pulse Propagation Equation Optical pulse : ~ ~ E( z, t ) A( z, t )ei ( k0 z 0t ) c.c. where, k0 nlin (0 ) 0 c Wave equation : ~ ~ 2E 1 2D 2 2 0 (6.5.11) 2 z c t ~ ~ Let’s introduce Fourier transform of E( z, t ) and D( z, t ) ; d ~ E( z,t ) E( z, )e it 2 d ~ D( z, ) ( )E( z, ) D( z,t ) D( z, )e it 2 (6.5.11) 2 E(z, ) 2 ( ) 2 E(z, ) 0 2 z c (6.5.14) Nonlinear Optics Lab. Hanyang Univ. Fourier transform of amplitude is given by ~ A( z,) A( z,t )eit dt The amplitude is related with the Fourier amplitude as E( z, )A( z, 0 )eik0 z A* ( z, 0 )e ik0 z A( z, 0 )eik0 z (6.5.14), slow varying approximation 2ik 0 A [k 2 ( )k02 ]A0 z where, k ( ) ( ) c k() ~ k0 k 2 k02 2k0 (k k0 ) A( z,ω,ω 0 ) i (k k0 )A( z,ω,ω 0 ) 0 z (6.5.19) Nonlinear Optics Lab. Hanyang Univ. Power series expansion of k() : 1 k k0 k NL k1 ( 0 ) k 2 ( 0 ) 2 2 where, k NL nNL 0 c dk k1 d 0 n2 I 0 (6.5.20) 2 ~ , I nlin ( 0 )c 2 A( z ,t ) c dn ( ) 1 1 nlin ( ) lin c d 0 vg (0 ) 1 dvg d 2k d 1 k2 2 2 d 0 d vg ( ) 0 v g d 0 (6.5.19) and (6.5.20) A 1 ik NL A ik1 (ω-ω0 )A ik 2 (ω-ω0 ) 2 A 0 z 2 ~ ~ ~ A A 1 2 A ~ k1 ik 2 2 ik NL A0 (6.5.26) z t 2 t Nonlinear Optics Lab. AA(z, ) ~ ~ AA(z, t ) Hanyang Univ. The equation can be simplified by means of a coordinate transformation ; t z t k1 z : retarded time vg ~ ~ ~ ~ ~ A s A A s A s τ A s k1 z z τ t z τ ~ ~ ~ ~ A A s z A s τ A s t z t τ t τ ~ ~ 2A 2A s t 2 τ 2 ~ ~ As As (z, ) ~ ~ A s 1 2A s ~ ik 2 i k A (6.5.26) NL s 0 z 2 2 0 n0 n20 ~ 2 ~ I As As If we express the nonlinear contribution to the propagation constant as k NL n2 c 2 ~ ~ A s 1 2A s ~ 2~ ik 2 i A s A s 2 z 2 group velocity dispersion : nonlinear schrodinger equation self-phase modulation Nonlinear Optics Lab. Hanyang Univ. 2 Optical Solitons ~ ~ A s 1 2A s ~ 2~ ik 2 i A s As 2 z 2 ~ As an example, a pulse whose amplitude is expressed by A s ( z,t )A0s sech( 0 )ei z k2 k 2 c 0 2 k2 and n2 must have opposite sign If A s 2 2 0 2n2 0 Report and k 2 2 02 , the pulse can propagate with an invariant shape : Optical soliton Ex) Fused silica optical fiber i) n2 > 0 (electronic polarization) ii) Group velocity dispersion parameter k2 : k2 > 0 for visible region # k2 < 0 for l > 1.3mm Nonlinear Optics Lab. Hanyang Univ. 10.4 Introduction to the Photorefractive Effect : The change in refractive index resulted from the optically induced redistribution of electrons and holes. # Photorefractive effect gives rise to a strong optical nonlinearity, however, the effect tends to be rather slow with response time of 0.1 s being typical. Origin of photorefractive effect Maxwell equation ; D4 dE 4 dx dE 4 dx # Refractive index distribution is shifted by 90 degree with respect to the intensity distribution Leads to the transfer of energy between the two incident beams 1 n n 3 reff E (reff 0) 2 Nonlinear Optics Lab. Hanyang Univ. 10.5 Photorefractive Equations of Kukhtarev et al. Assume that the crystal contains NA acceptors and ND0 donors per unit volume, with NA<<ND0 Rate equations : N D ( sI )( N D0 N D ) ne N D t ne N D 1 ( j ) t t e (10.5.1) (10.5.2) where, s : photoionization cross section of a donor : thermal generation rate (thermal ionization) : recombination coefficient j : electrical current density Nonlinear Optics Lab. Hanyang Univ. Electrical current density : j ne emE eDne j ph (10.5.3) where, m : electron mobility D : Diffusion constant jph : photovoltaic contribution to the current Local field within the crystal : dcE 4e(ne N A N D ) (10.5.4) Change in dielectric constant : eff |E| (10.5.5) Wave equation for the optical field : 1 2 ~ ~ Eopt 2 2 ( ) Eopt 0 c t 2 (10.5.6) : Cannot easily be solved exactly Nonlinear Optics Lab. Hanyang Univ. 10.6 Two-Beam Coupling in Photorefractive Materials Optical field within the crystal : ~ ik r Eopt (r,t )[ Ap e p As eik s r ]e it c.c. Intensity distribution of light within the crystal : I n0 c ~ 2 E opt I 0 ( I1eiqx c.c.) 4 (10.6.2) n0 c (| Ap |2 | As |2 ) 2 nc I1 0 ( Ap As* )(eˆ p eˆs ) 2 q qxˆ k p k s : grating wave vector where, I 0 Nonlinear Optics Lab. Hanyang Univ. Intensity distribution of light within the crystal can also be described by I I 0 [1mcos(qx )] where, m2|I1|/ I 0 : modulation index tan 1 (ImI1 /Re I1 ) Approximate steady-state solution (|I1|<<I0) Put, E E0 ( E1eiqx c.c.) ne ne0 (ne1eiqx c.c.) j j0 ( j1eiqx c.c.) N D N D 0 ( N D1eiqx c.c.) (10.5.1)~(10.5.6) (Assume E1, j1, ne1, ND1 are small that the product of any of them can be neglect) 1) From x independent term, ( sI 0 )( N D0 N D 0 ) ne 0 N D 0 Report j0 ne 0 emE0 j ph.0 j0 constant D0 N ne 0 N A Nonlinear Optics Lab. (10.6.5) Hanyang Univ. 19 3 16 3 13 3 In most realistic case, N D (~10 cm ) N A (~10 cm ) ne 0 (~10 cm ) and N D1 ne1 N D 0 N A ( sI 0 )( N D0 N A ) ne 0 NA 2) From eiqx dependent term (assume E0=0), Report sI1 ( N D0 N D 0 )( sI 0 ) N D1 ne0 N D1 ne1 N A j1 0 ne0eE1 iqk BTne1 iq dc E1 4e(ne1 N D1 ) eDk BTm : Einstein relation sI1 ED E1 i sI 0 1 ED / Eq qk BT : diffusion field strength e 4e Eq N eff : maximum space charge field dc q Neff N A ( N D0 N A )/ N D0 where, ED Nonlinear Optics Lab. Hanyang Univ. sI1 ED E1 i sI 0 1 ED / Eq (10.6.8) i) Quarter period shift of the index grating with respective to the intensity distribution E1 sI1 /( sI 0 ) I1 iii) E1 fn( E D and Eq ) : depends also on grating vector q ii) Defining the optimum value of q maximizing the second factor as qopt, 2(q/qopt ) sI1 Eopt E1 i 2 sI 0 1(q/qopt ) where, 4N eff e 2 , qopt k T B dc can be adjusted q2n( /c)sinq N eff k BT Eopt dc 1/ 2 Nonlinear Optics Lab. Hanyang Univ. Spatial growth rate 1) Steady state (10.6.2) and (10.6.8) Ap As* E E1 i 2 | A | | A |2 m p s ED 1 ED / Eq where, Em iqr ik r e c.c.( As e iks r Ap e p ) 4 Nonlinear polarization : P NL Dielectric constant change : 2 eff E1 2 2 i E | A | As iks r * eff m p iks r NL Ps Ap e e 2 2 4 4 | Ap | | As | ik p r i eff Em | As | Ap ik p r P As e e 4 4 | Ap |2 | As |2 2 2 (10.6.16) NL p Nonlinear Optics Lab. Hanyang Univ. Wave equation (slow varying approx.) : dAs iks r 2 NL 2ik e 4 2 Ps dz s c | Ap |2 As dAs 3 n eff Em dzs 2c | Ap |2 | As |2 Is Similarly, nc 2 | As | 2 IsI p dI s dz s I s I p dI p dz p where, n 3 eff Em c IsI p I s I p : when >0, Is is amplified and Ip is attenuated Nonlinear Optics Lab. Hanyang Univ. 2) Transient two-beam coupling Assume, ne N D , N D N D0 , sI 0 Ap As* E1 E1 iEm t | Ap |2 | As |2 where, D 1 ED / EM 1 ED / Eq D dc 4emne 0 EM N A qm Wave equations : Ap i eff As E1 x p 2n p c As i A E * xs 2ns c eff p 1 Nonlinear Optics Lab. Hanyang Univ.