Download Creation of Colloidal Periodic Structure

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 6. Processes Resulting from
the Intensity-Dependent Refractive Index
- Optical phase conjugation
- Self-focusing
- Optical bistability
- Two-beam coupling
- Optical solitons
- Photorefractive effect (Chapter 10)
: cannot be described by a nonlinear susceptibility c(n) for any value of n
Reference :
R.W. Boyd, “Nonlinear Optics”, Academic Press, INC.
Nonlinear Optics Lab.
Hanyang Univ.
6.4 Two-Beam Coupling
: Under certain condition, energy is transferred from one beam to the other
 Refractive index experienced by either wave is modified by the intensity of the other wave
Total optical field :
~
E(r,t )A1ei (k1r1t ) A2ei (k 2r2t ) c.c. ki n0i c
I
moving
grating
n0 c ~ 2
E
4





n0 c
A1A1*  A 2 A*2  A1A*2ei (k1 k 2 )r i (1 2 )t )  c.c
2
nc
q  k 1  k 2 : grating wave vector
 0 A1A1*  A 2 A*2  A1A*2 ei (qr t )  c.c
where,
2
  1  2 : frequency difference
I

Nonlinear Optics Lab.
Hanyang Univ.
Special case (q=180 degree)
q2k 2
I


n0 c
A1A1* A 2 A*2  A1A*2 ei ( 2 k z t ) c.c
2

 0 
 0 
Phase velocity : v| |/2k
Nonlinear Optics Lab.
Hanyang Univ.
Theoretical treatment
Nonlinear refractive index considering the dynamic response (Debye relaxation equation) :

dnNL
 nNL  n2 I
dt
Solution :
nNL  
n2
t


I(t )e (t t )  dt 
Ex) I(t ')e
 it 

t
e

it  ( t t )
e
dt e
t 
t
e

(  i 1) t 
e it
dt 
i 1 
n0 n2c
A1A*2ei (qrt ) A1*A 2e i (qrt )
*
*
 nNL 
A1A1 A 2 A 2 

2
1i
1i


Wave equation :
2
2~
n

E
~
2E  2 2  0
c t
nNL n0
where, n  n0  nNL
and
n 2 n02 2n0 nNL
Nonlinear Optics Lab.
Hanyang Univ.


2
n02 2
n02 n2 22
n02 n212 A1 A 2
d 2A2
dA 2 2
2
2

2ik 2
 k 2 A 2  2 A 2 
A1  A 2 A 2 
dz 2
dz
c
c
c 1i
stationary index
time-varying index


2
n n
n n  A1 A 2
dA 2
2
2
 i 0 2 A1  A 2 A 2  i 0 2
dz
2
2 1  i
d I 2 n0 c  * dA 2
dA*2 


  A 2
A 2
dz 2 
dz
dz 
Ii 

where,  1 2
2n2 
II
2 2 1 2
c 1 
: when >0 (1<1) I2 increases with z
n0 c
A i A*i
2
Maximum gain ;
dI 2

 n2 I1I 2
dz
c
when
 1
Nonlinear Optics Lab.
Hanyang Univ.
# There is no energy coupling if  0
i)  0 (nonlinearity has a fast response)
ii)  1 2 0 (input waves are at the same frequency)

Two-beam coupling can occur in certain photorefractive crystal even between beams
of the same frequency.
In such case, energy transfer occurs as a result of a spatial phase shift
between the nonlinear index grating and the optical intensity distribution.
Nonlinear Optics Lab.
Hanyang Univ.
6.5 Pulse Propagation and Optical Solitons
Optical solitons : Under certain condition, an exact cancellation of group velocity dispersion
can occur by a nonlinear optical process so called self-phase modulation.
Self-Phase Modulation
~
~
Optical pulse : E
( z, t )  A( z, t )ei ( k0 z 0t )  c.c.
Refractive index of 3rd order nonlinear medium : n(t )n0 n2 I (t ), I (t )
2
n0 c ~
A( z,t )
2
Phase change by nonlinear refractive index :
NL (t )n2 I (t )0 L c
Frequency change :
d
dt
(t )  NL (t )  
n2 0 L dI (t )
c
dt
Nonlinear Optics Lab.
Hanyang Univ.
Example
Pulse shape :
I (t ) I 0 sech 2 (t  0 )
Nonlinear phase shift :
 NL (t )n2  0 c LI 0 sech 2 (t  0 )
Frequency shift :
d
(t )  NL (t )
dt
2n2  0 c 0 LI 0 sech 2 (t  0 )tan h (t  0 )
# Maximum frequency shift :
max 
max
 NL
0
max
,  NL
 n2
0
c
I0L
: Whenever max exceeds the spectral width of the
max
 2 ,
incident pulse (~2/0), that is  NL
the spectral broadening due to self-phase
modulation will be important.
Nonlinear Optics Lab.
Hanyang Univ.
Pulse Propagation Equation
Optical pulse :
~
~
E( z, t )  A( z, t )ei ( k0 z 0t )  c.c.
where, k0  nlin (0 ) 0 c
Wave equation :
~
~
 2E 1  2D
 2 2  0 (6.5.11)
2
z
c t
~
~
Let’s introduce Fourier transform of E( z, t ) and D( z, t ) ;

d
~
E( z,t )   E( z, )e it

2

d
~
D( z, )   ( )E( z, )
D( z,t )   D( z, )e it

2
(6.5.11) 
 2 E(z,  )
2
  ( ) 2 E(z,  )  0
2
z
c
(6.5.14)
Nonlinear Optics Lab.
Hanyang Univ.
Fourier transform of amplitude is given by
 ~
A( z,)   A( z,t )eit dt

The amplitude is related with the Fourier amplitude as
E( z, )A( z, 0 )eik0 z A* ( z, 0 )e ik0 z
A( z, 0 )eik0 z
(6.5.14), slow varying approximation 
2ik 0
A
[k 2 ( )k02 ]A0
z
where, k ( )  ( ) c
k() ~ k0  k 2  k02  2k0 (k  k0 )
A( z,ω,ω 0 )
 i (k  k0 )A( z,ω,ω 0 )  0
z
(6.5.19)
Nonlinear Optics Lab.
Hanyang Univ.
Power series expansion of k() :
1
k k0 k NL k1 (  0 ) k 2 (  0 ) 2
2
where, k NL nNL
0
c
 dk 
k1  

 d  0
n2 I
0
(6.5.20)
2
~
, I nlin ( 0 )c 2 A( z ,t )
c
dn ( ) 
1
1
 nlin ( )   lin

c
d   0 vg (0 )
 1 dvg 
 d 2k 
d  1 



k2   2 

  2




 d  0 d  vg ( )   0
 v g d  0
(6.5.19) and (6.5.20) 
A
1
 ik NL A  ik1 (ω-ω0 )A  ik 2 (ω-ω0 ) 2 A  0
z
2
~
~
~
A A 1  2 A
~

k1  ik 2 2 ik NL A0 (6.5.26)
z
t 2 t
Nonlinear Optics Lab.
AA(z, )
~ ~
AA(z, t )
Hanyang Univ.
The equation can be simplified by means of a coordinate transformation ;
 t
z
 t  k1 z : retarded time
vg
~
~
~
~
~
A s
A A s A s τ A s



 k1
z
z
τ t
z
τ
~
~
~
~
A A s z A s τ A s



t
z t
τ t
τ
~
~
 2A  2A s

t 2
τ 2
~ ~
As As (z, )
~
~
A s 1
 2A s
~
 ik 2

i

k
A
(6.5.26) 
NL
s 0
z 2
 2
0
n0 n20 ~ 2
~
I
As   As
If we express the nonlinear contribution to the propagation constant as k NL  n2
c
2
~
~
A s 1
 2A s
~ 2~
 ik 2
 i A s A s
2
z 2

group velocity dispersion
: nonlinear schrodinger equation
self-phase modulation
Nonlinear Optics Lab.
Hanyang Univ.
2
Optical Solitons
~
~
A s 1
 2A s
~ 2~
 ik 2

i

A
s As
2
z 2

~
As an example, a pulse whose amplitude is expressed by A s ( z,t )A0s sech(  0 )ei z
k2
k 2 c
0 2
 k2 and  n2 must have opposite sign
If A s  2 
2
 0 2n2 0
Report and
 k 2 2 02 , the pulse can propagate with an invariant shape : Optical soliton
Ex) Fused silica optical fiber
i) n2 > 0 (electronic polarization)
ii) Group velocity dispersion parameter k2 :
k2 > 0 for visible region
# k2 < 0 for l > 1.3mm
Nonlinear Optics Lab.
Hanyang Univ.
10.4 Introduction to the Photorefractive Effect
: The change in refractive index resulted from the optically induced redistribution of
electrons and holes.
# Photorefractive effect gives rise to a strong optical nonlinearity, however,
the effect tends to be rather slow with response time of 0.1 s being typical.
Origin of photorefractive effect
Maxwell equation ; D4  dE  4
dx 
dE 4

dx 
# Refractive index distribution is shifted
by 90 degree with respect to the intensity distribution
 Leads to the transfer of energy between the two
incident beams
1
n n 3 reff E (reff 0)
2
Nonlinear Optics Lab.
Hanyang Univ.
10.5 Photorefractive Equations of Kukhtarev et al.
Assume that the crystal contains NA acceptors and ND0 donors per unit volume, with NA<<ND0
Rate equations :
N D
( sI   )( N D0  N D ) ne N D
t
ne N D 1

 ( j )
t
t e
(10.5.1)
(10.5.2)
where, s : photoionization cross section of a donor
 : thermal generation rate (thermal ionization)
 : recombination coefficient
j : electrical current density
Nonlinear Optics Lab.
Hanyang Univ.
Electrical current density :
j ne emE eDne  j ph
(10.5.3)
where, m : electron mobility
D : Diffusion constant
jph : photovoltaic contribution to the current
Local field within the crystal :
 dcE 4e(ne  N A  N D )
(10.5.4)
Change in dielectric constant :
  eff |E|
(10.5.5)
Wave equation for the optical field :
1 2
~
~
 Eopt  2 2 (  ) Eopt 0
c t
2
(10.5.6)
: Cannot easily be solved exactly
Nonlinear Optics Lab.
Hanyang Univ.
10.6 Two-Beam Coupling in Photorefractive Materials
Optical field within the crystal :
~
ik r
Eopt (r,t )[ Ap e p  As eik s r ]e it c.c.
Intensity distribution of light within the crystal :
I
n0 c ~ 2
E opt  I 0 ( I1eiqx c.c.)
4
(10.6.2)
n0 c
(| Ap |2 | As |2 )
2
nc
I1  0 ( Ap As* )(eˆ p eˆs )
2
q  qxˆ  k p k s : grating wave vector
where, I 0 
Nonlinear Optics Lab.
Hanyang Univ.
Intensity distribution of light within the crystal can also be described by
I I 0 [1mcos(qx )]
where, m2|I1|/ I 0 : modulation index
 tan 1 (ImI1 /Re I1 )
Approximate steady-state solution (|I1|<<I0)
Put, E E0 ( E1eiqx c.c.)
ne ne0 (ne1eiqx c.c.)
j  j0 ( j1eiqx c.c.)
N D  N D 0 ( N D1eiqx c.c.)
(10.5.1)~(10.5.6)  (Assume E1, j1, ne1, ND1 are small that the product of any of them can be neglect)
1) From x independent term,
( sI 0   )( N D0  N D 0 ) ne 0 N D 0
Report
j0 ne 0 emE0  j ph.0
j0 constant

D0
N ne 0  N A
Nonlinear Optics Lab.
(10.6.5)
Hanyang Univ.
19
3
16
3
13
3
In most realistic case, N D (~10 cm )  N A (~10 cm )  ne 0 (~10 cm )
and N D1 ne1
 N D 0  N A
( sI 0   )( N D0  N A )
ne 0 
 NA
2) From eiqx dependent term (assume E0=0),
Report
sI1 ( N D0  N D 0 )( sI 0   ) N D1  ne0 N D1  ne1 N A
j1 0
ne0eE1 iqk BTne1
iq dc E1 4e(ne1  N D1 )
eDk BTm : Einstein relation
 sI1  ED 


 E1 i


 sI 0    1 ED / Eq 
qk BT
: diffusion field strength
e
4e
Eq 
N eff : maximum space charge field
 dc q
Neff N A ( N D0 N A )/ N D0
where, ED 
Nonlinear Optics Lab.
Hanyang Univ.
 sI1  ED 


E1 i


 sI 0    1 ED / Eq 
(10.6.8)
i) Quarter period shift of the index grating with respective to the intensity distribution
E1  sI1 /( sI 0   )  I1
iii) E1  fn( E D and Eq ) : depends also on grating vector q
ii)
Defining the optimum value of q maximizing the second factor as qopt,
2(q/qopt )
 sI1 
 Eopt
E1 i
2
 sI 0    1(q/qopt )
where,
 4N eff e 2 
,
qopt 
 k T 
 B dc 
can be adjusted
q2n( /c)sinq
 N eff k BT 

Eopt 

dc


1/ 2
Nonlinear Optics Lab.
Hanyang Univ.
Spatial growth rate
1) Steady state
(10.6.2) and (10.6.8) 
 Ap As* 
E
E1 i 2
 | A | | A |2  m
p 
 s
ED
1 ED / Eq
where, Em 
 iqr

ik r
e c.c.( As e iks r  Ap e p )
 4

Nonlinear polarization : P NL 
Dielectric constant change :
  2 eff E1
2
2

i


E
|
A
|
As iks r


*
eff
m
p
iks r
NL
 Ps 
Ap e 
e
2
2
4
4
| Ap | | As |

ik p r i  eff Em | As | Ap
ik p r
P  As e 
e
4
4 | Ap |2 | As |2
2
2
(10.6.16)
NL
p
Nonlinear Optics Lab.
Hanyang Univ.
Wave equation (slow varying approx.) :
dAs iks r
 2 NL
2ik
e 4 2 Ps
dz s
c
| Ap |2 As
dAs  3

 n  eff Em
dzs 2c
| Ap |2 | As |2
Is 

Similarly,
nc 2
| As |
2
IsI p
dI s

dz s I s  I p
dI p
dz p


where,  n 3 eff Em
c
IsI p
I s I p
: when >0, Is is amplified and Ip is attenuated
Nonlinear Optics Lab.
Hanyang Univ.
2) Transient two-beam coupling
Assume, ne  N D , N D  N D0 ,  sI 0
Ap As*
E1

 E1 iEm
t
| Ap |2 | As |2
where,
  D
1 ED / EM
1 ED / Eq
D
 dc
4emne 0
EM 
N A
qm
Wave equations :
 Ap i

 eff As E1

 x p 2n p c

 As  i  A E *
 xs 2ns c eff p 1
Nonlinear Optics Lab.
Hanyang Univ.