Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MTH 13 Test 2 Practice Problems Summer 2013 Working on one side only, verify the given identity. sin x cos x 1) + =sec x csc x cos x sin x 11) tan α = < π Find tan (α + β). Use the given information to find the exact value of the expression. 7 12) Find cos 2θ. sin θ = , θ lies in quadrant I. 25 2) csc2 x sec x = sec x + csc x cot x Find the exact value of the expression. 3) cos (245° - 5°) Use the given information to find the exact value of the expression. 4 4) Find cos (α - β). sin α = , α lies in quadrant 5 II, and cos β = 2 , β lies in quadrant I. 5 Use the given information to find the exact value of the expression. 15 7) Find sin (α + β). tan α = , α lies in 8 4 , θ lies in quadrant II. 5 Use the given information given to find the exact value of the trigonometric function. 3 18) cos θ = - , θ lies in quadrant III Find 5 quadrant II. quadrant III, and sin β = 14) Find tan 2θ. sin θ = Use a half-angle formula to find the exact value of the expression. 5π 17) sin 12 7 , β lies in 25 cos α = - 21 , θ lies in quadrant III. 20 Use a half-angle formula to find the exact value of the expression. 16) cos 112.5° Find the exact value of the expression. 6) sin 25° cos 35° + cos 25° sin 35° 8) Find cos (α + β). 13) Find sin 2θ. tan θ = Write the expression as the sine, cosine, or tangent of a double angle. Then find the exact value of the expression. 15) cos2 120° - sin2 120° Find the exact value by using a sum or difference identity. 5) sin 15° quadrant III, and cos β = - 24 3π 20 π , π<α< ; cos β = , <β 7 2 29 2 7 , α lies in 25 21 , β lies in 5 cos quadrant II. θ . 2 Find all solutions of the equation. 19) 2 cos x + 2 = 0 Find the exact value by using a difference identity. 9) tan 75° 20) 8 sin x + 6 2 = 6 sin + 5 2 Find the exact value under the given conditions. 3 π 20 π 10) sin α = , 0 < α < ; cos β = , 0<β< 5 2 29 2 Solve the equation on the interval [0, 2π). 3 21) sin 4x = 2 Find tan (α + β). 1 22) cos 2x = Two sides and an angle (SSA) of a triangle are given. Determine whether the given measurements produce one triangle, two triangles, or no triangle at all. Solve each triangle that results. Round lengths to the nearest tenth and angle measures to the nearest degree. 36) A = 30°, a = 22, b = 44 3 2 23) cos2 x + 2 cos x + 1 = 0 24) cos x = sin x 37) B = 114°, b = 4, a = 25 25) sec2 x - 2 = tan2 x 38) B = 28°, b = 18.4, a = 19.6 26) sin2 x + sin x = 0 39) B = 41°, a = 4, b = 3 Solve the equation on the interval [0, 2π). 27) (tan x + 1) (cos x + 1) = 0 Find the area of the triangle having the given measurements. Round to the nearest square unit. 40) A = 30°, b = 15 inches, c = 5 inches 28) sin x - 2 sin x cos x = 0 41) A = 20°, b = 17 meters, c = 7 meters Solve the equation on the interval [0, 2π). 29) cos 2x = 2 - cos 2x Solve the problem. 42) A guy wire to a tower makes a 70° angle with level ground. At a point 38 ft farther from the tower than the wire but on the same side as the base of the wire, the angle of elevation to the top of the tower is 37°. Find the length of the wire (to the nearest foot). 30) sin 2x + sin x = 0 31) 2 cos2 x + sin x - 2 = 0 Use a calculator to solve the equation on the interval [0, 2 π). Round to the nearest hundredth. 32) sin 2x + sin x = 0 Find a. If necessary, round your answer to two decimal places. 43) Solve the triangle. 33) 75° 7 45° 25° 50° 1.8 Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. 34) B = 30° C = 111° b = 33 Solve the triangle. Round lengths to the nearest tenth and angle measures to the nearest degree. 44) 9 6 35) A = 11.2°, C = 131.6°, a = 91.2 4 2 45) a = 6, b = 9, C = 115° 46) a = 8, b = 14, c = 16 Solve the problem. 47) Two airplanes leave an airport at the same time, one going northwest (bearing 135°) at 409 mph and the other going east at 325 mph. How far apart are the planes after 4 hours (to the nearest mile)? 48) A painter needs to cover a triangular region 60 meters by 69 meters by 70 meters. A can of paint covers 70 square meters. How many cans will be needed? Use Heron's formula to find the area of the triangle. Round to the nearest square unit. 49) a = 16 yards, b = 13 yards, c = 16 yards Without using a calculator, find the exact value. π 50) sec 4 51) sin (- π ) 6 52) cot - π 2 53) cos 5π 4 54) sin 11π 3 55) cos 35π 6 3 Answer Key Testname: MTH 113 TEST 2 PRACTICE SUMMER 2013 1) Working on the left side: sin x sin x cos x cos x · + · cos x sinx sin x cos x 18) - sin2 x cos2 x + cos x sin x sin xc cos x sin2 x + cos2 x cos x sin x 1 cos x sin x 1 1 · cos x sin x 8) 16) - 1 2 17) 1 2 π 5π , π, 3 3 π 7π 9π 15π , , , 8 8 8 8 2π 4π , π, 3 3 π 5π , 6 6 A2 = 119°, C2 = 20°, c2 = 1.6 40) 19 square inches 41) 20 square meters 42) 42 feet 43) 2.22 44) A = 127.2°, B = 32.1°, C = 20.7° 45) c = 12.8, A = 25°, B = 40° 46) A = 30°, B = 61°, C = 89° 47) 2716 miles 48) 27 cans 49) 95 square yards 24 14) 7 1 2 3π 7π , π, 4 4 A2 = 150°, C2 = 2°, c2 = 1.4 39) A1 = 61°, C1 = 78°, c1 = 4.5; 840 13) 841 15) - π 11π 13π 23π , , , 12 12 12 12 32) 0, 2.09, 3.14, 4.19 33) B = 55°, a = 6.55, c = 8.25 34) A = 39°, a = 41.5, c = 61.6 35) B = 37.2°, b = 283.9, c = 351.1 36) B = 90°, C = 60°, c = 38.1 37) no triangle 38) A1 = 30°, C1 = 122°, c1 = 33.2; 3+2 144 10) 17 527 625 22) 31) 0, π, 9) 12) π π 2π 7π 7π 13π 5π 19π , , , , , , , 12 6 3 12 6 12 3 12 30) 0, 14 + 24 21 125 333 644 21) 29) 87 425 11) 5π 7π + 2nπ or x = + 2nπ 4 4 28) 0, 3 2 7) - 20) x = 27) 2( 3 - 1) 4 6) 3π 5π + 2nπ or x = + 2nπ 4 4 25) no solution 3π 26) 0, π, 2 -6 + 4 21 25 5) 19) x = 23) π π 5π 24) , 4 4 sec x csc x 2) Pick a side and simplify until it looks like the other side. 1 3) 2 4) 5 5 22+ 2 3 4 Answer Key Testname: MTH 113 TEST 2 PRACTICE SUMMER 2013 50) 2 1 51) 2 52) 0 53) - 2 2 54) - 3 2 55) 3 2 5