Download Decimals Worksheet 1 - Trigg County Public Schools

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigg County Adult Education
TABE Math Computation Refresher Course
Please return this workbook back to the Trigg County Adult
Education Center. Do NOT write in this booklet. There are no example
problems for a reason- we want you to attend our refresher classes.
You should begin in the class you received the first minus (-) or
progress (P) sign in. Ex: if you received a minus sign in the integer
section don’t start with algebra class!
In an effort to cut down on our supply usage, NO additional practice
pages will be handed out. If you need more practice you may go back
and rework these pages. Some other suggestions include coming into
the center and write problems out of our classroom textbooks (NO
COPIES ARE MADE) or search the internet.
Clients will NOT be allowed to retest unless this
booklet is returned, along with the completion of
two math refresher courses and additional
independent study hours.
TABLE OF CONTENTS
Decimals
2-5
Fractions
6 - 21
Percents
22 - 25
Integers
26 – 31
Exponents/Powers/Square Roots/Scientific Notation/Absolute Value
32 - 34
Order Of Operations
35-36
Combining Like Terms
37
Algebra
38-40
Distributing
41
1
Decimal-Addition
To add or subtract decimals, you must first line up your decimals.
Remember that if no decimal is visible it is understood that it is to the right
of the whole number. You may need to add zeros to serve as placeholders.
1a. 0.2 + 0.6 =
1b. 0 + 0.47 =
2a. 0.267 + 0.4 =
2b. 0.027 + 0.42=
3a. 0.985 + 0.44=
3b. 0.8 + 0.8 =
4a. 0.74 + 0.4 =
4b. 0.47 + 0.6=
5a. 0.62 + 0.6 =
5b. 0.7 + 0.76 =
Decimals - Subtraction
1a. 4 - 2.48 =
1b. 4 - 0.6 =
2a. 18 - 5.8 =
2b. 6 - 4.1 =
3a. 9.46 - 5 =
3b. 7 - 4 =
4a. 2 - 0.42 =
4b. 19 - 6.3 =
5a. 16 - 5.7 =
5b. 15 - 7.81=
2
Answers Decimals- Addition
1a.
0.8
1b.
0.47
2a.
0.667
2b.
0.447
3a.
1.425
3b.
1.6
4a.
1.14
4b.
1.07
5a.
1.22
5b.
1.46
Answers Decimals- Subtraction
1a.
1.52
1b.
3.4
2a.
12.2
2b.
1.9
3a.
4.46
3b.
3
4a.
1.58
4b.
12.7
5a.
10.3
5b.
7.19
Decimals - Multiplication
To multiply decimals, multiply the numbers as in a regular multiplication
problem. Remember with multiplication you can swap your numbers
around. It’s easier if you put the number with the most digits on top. Count
the number of decimal places in the problem, the answer is the same
number of decimal places.
1a. 0.7 X 0.07 =
1b. 0.6 X 0.1 =
2a. 0.01 X 0.1=
2b. 0.09 X 0.9 =
3a. 0.8 X 0.04 =
3b. 0.4 X 0.7 =
4a. 0.06 X 0.3 =
4b. 0.7 X 0.08 =
5a. 0.4 X 0.6 =
5b. 0.4 X 0.1 =
3
Answers Decimals- Multiplication
1a.
0.049
1b.
0.06
2a.
0.001
2b.
0.081
3a.
0.032
3b.
0.28
4a.
0.018
4b.
0.056
5a.
0.24
5b.
0.04
Decimals - Division
HINT: FIRST number (dividend) goes always goes IN your box.
To divide a decimal by a whole number, divide as normally would and
move your decimal straight up.
To divide a decimal by a decimal, first change the problem to a new
problem with a whole number divisor (number on the outside of the box).
To do this, move the decimal as far to the right as possible. Move the
decimal the same number of places on the inside of the box. If a decimal is
not already inside the box, it is understood that it is to the right of the last
number. You may have to add zero’s to your dividend in order to place the
zero in the correct spot. Then move your decimal straight up.
1a.
0.45 ÷ 3 =
1b. 0.52 ÷ 2 =
2a.
0.00 ÷ 6 =
2b. 0.96 ÷ 2 =
3a.
0.78 ÷ 3 =
3b. 0.42 ÷ 6 =
4a.
1.47 ÷ 0.07 =
4b. 0.99 ÷ 0.09 =
5a.
1.72 ÷ 0.02 =
5b. 1.68 ÷ 0.04 =
6a.
1.76 ÷ 0.02 =
6b. 0.92 ÷ 0.04 =
7a.
1.86 ÷ 0.06 =
7a. 1.55 ÷ 0.05=
8a.
0.84 ÷ 0.06 =
8a. 1.18 ÷ 0.02 =
4
1a.
2a.
3a.
4a.
5a.
6a.
7a.
8a.
Answers Decimals- Division
1b.
0.15
2b.
0
3b.
0.26
4b.
21
5b.
86
6b.
22
7b.
31
14
8b.
0.26
0.48
0.07
11
42
23
31
59
Decimal Extra Practice
1a.
2a.
3a.
4a.
5a.
6a.
7a.
8a.
9a.
10a.
11a.
12a.
13a.
14a.
15a.
16a.
17a.
18a.
3.5 + 7.3 =
26.73 + 13.05=
90.47 + 14.3 =
47.7 - 39.09 =
0.593 - 0.3879 =
593.4 - 487.92 =
12.5 + 13.7 =
119 - 105.7 =
7.35 + 5.9 =
2.8 ÷ 7 =
0.128 ÷ 8 =
0.036 ÷ 6 =
50 ÷ 2.5 =
0.0078 ÷ 0.003
24 ÷ 0.3 =
1.69 ÷ 1.3
0.48 ÷ 0.2
25 ÷ 0.05
1b.
2b.
3b.
4b.
5b.
6b.
7b.
8b.
9b.
10b.
11b.
12b.
13b.
14b.
15b.
16b.
17b.
18b.
3.6 ÷ 0.04 =
0.56 ÷ 0.007 =
14.3 X 7.8 =
5.2 X 2 =
45 X 7.3 =
213 X 6.7 =
15.2 X 21.3 =
12.3 X 4.3 =
1.503 X 4 =
7.82 X 6.8 =
452.8 X 12 =
54.02 X 0.2=
21 X 0.5 =
1.327 X 91=
5.42 X 0.63=
4.85 X 5.6=
4.20 X 4.5=
5.04 X 6.1 =
5
Answers Decimal Extra Practice
1a.
10.8
2a.
39.78
3a.
104.77
4a.
8.61
5a.
0.2051
6a.
105.48
7a.
26.2
8a.
13.3
9a.
13.25
1b.
2b.
3b.
4b.
5b.
6b.
7b.
8b.
9b.
90
80
111.54
10.4
328.5
1427.1
323.76
52.89
6.012
10a.
11a.
12a.
13a.
14a.
15a.
16a.
17a.
18a.
0.4
0.016
0.006
20
2.6
80
1.3
2.4
500
10b.
11b.
12b.
13b.
14b.
15b.
16b.
17b.
18b.
53.176
5433.6
10.804
10.5
120.757
3.4146
27.16
18.9
30.744
Fraction Terminology
Fraction- part of a whole
part
_____ line
Whole
numerator
represents division
denominator
proper fraction- numerator is smaller than denominator
improper fraction- numerator is larger than denominator
mixed number- whole number and fraction
Any time there is a whole number by itself, put it over the whole number 1
to make it into fraction form.
If there is a remainder make it into fraction form using the remainder as
your numerator and keep the same denominator
reduce/simplify/lowest terms- all fractions should be reduced
determine if there is a (same) number that will go into the numerator
and denominator both evenly
6
Simplify fractions
Ask- What is the largest number that will go EVENLY into both numbers?
Divide each number by that number to reduce the fraction down.
4
1a.
7
1b.
20
1c.
4
56
40
3
6
6
2a.
2b.
2c.
15
45
9
5
16
12
3a.
3b.
3c.
50
48
3
6
4a.
4b.
30
58
6
7
5a.
5b.
27
9
4c.
33
20
5c.
12
28
50
16
21
6
6a.
6b.
6c.
18
24
48
25
36
42
7a.
7b.
7c.
50
63
56
18
6
35
8a.
8b.
32
8c.
48
49
7
Answers Simplifying Fractions
1a.
2a.
3a.
4a.
5a.
6a.
7a.
8a.
1b.
2b.
3b.
4b.
5b.
6b.
7b.
8b.
1
1/5
1/10
1/10
½
8/9
½
9/16
1c.
2c.
3c.
4c.
5c.
6c.
7c.
8c.
1/8
2/15
1/3
3/29
¼
7/8
4/7
1/8
1/2
2/3
4/9
3/11
2/5
1/8
3/4
5/7
Improper Fractions to Mixed Numbers
improper fraction to a mixed number- divide your denominator into your
numerator
1a 14 1b 33 1c 45 1d 44 1e 11
8
6
9
16
2
1f 28 1g 50
10
4
2a 30 2b 26 2c 18 2d 36 2e 12
9
8
6
10
3
2f 30 2g 16
7
8
3a 22 3b 16 3c 40 3d 36 3e 45
7
3
9
11
6
3f 27 3g 18
3
6
4a
4f
5
4
4b 56 4c 42 4d 15 4e
7
20
3
5
6
9
6
4g 50
5
Answers Improper Fractions to Mixed Number
1a 1 3/4 1b 5 ½ 1c
5
1d 2 3/4 1e 5 1/2 1f 2 4/5 1g 12 1/2
2a 3 1/3 2b
3¼
2c
3a 3 1/7 3b 5 1/3 3c
4a 1 1/4 4b
8
3
4 4/9
2d
3 3/5
2e
4
2f 4 2/7 2g
3d 3 3/11 3e 7 1/2 3f
4c 2 1/10 4d
5
9
2
3g
3
4e 2 1/2 4f 1 1/2 4g
10
8
Mixed Number to Improper Fraction
mixed number to an improper fraction- multiply the denominator times the
whole number, then add the product and numerator, that sum becomes the
numerator and the denominator stays the same
1a.
1 2/8
1b.
2 1/7
1c. 7 6/10
2a.
1 1/10
2b.
3 2/7
2c. 6 4/5
3a.
1 5/8
3b.
9 1/5
3c. 8 8/10
4a.
2 3/4
4b.
1 4/7
4c. 5 1/3
5a.
8 3/4
5b.
9 1/2
5c. 4 3/5
6a.
6 1/7
6b.
2 1/8
6c. 5 1/4
7a.
4 3/5
7a.
3 3/4
7c. 3 5/9
8a.
8 1/9
8a.
5 6/7
8c. 4 1/3
Answers Mixed Numbers to Improper Fractions
1a.
10/8
1b.
15/7
2a.
11/10
2b.
23/7
1c. 76/10
2c. 34/5
3a.
13/8
3b.
46/5
3c. 88/10
4a.
11/4
4b.
11/7
5a.
35/4
5b.
19/2
4c. 16/3
5c. 23/5
6a.
43/7
6b.
17/8
7a.
23/5
7a.
15/4
6c. 21/4
7c. 32/9
8a.
73/9
8a.
41/7
8c. 13/3
9
Fraction to Decimal
fraction to a decimal- divide your numerator by your denominator
1a 1
3
1b
1
4
1c
1
2
1d
3
4
1e
7
8
1f
5
9
1g
1
5
2a 2
5
2b
3
5
2c
4
5
2d
1
6
2e
5
6
2f
1
7
2g
2
7
3a 3
7
3b
4
7
3c
5
7
3d
6
7
3e
7
7
3f
2
9
3g
1
9
4a 4
9
4b
6
9
4c
7
9
4d
1
10
4e
3
10
4f
6
10
4g
7
10
Answers Fractions to Decimals
1a. .33
1b.
.25
1c. .50
1d.
.75
1e. .88
1f.
.55
1g. .2
2a. .4
2b.
.6
2c. .8
2d.
.16
2e. .83
2f.
.14
2g. .29
3a. .43 3b.
.57
3c. .71
3d.
.86
3e. 1
3f.
.22
3g. .11
4a. .44 4b.
.66 4c. .77
4d.
.1
4e. .3
4f.
.6
4g. .7
Multiplying Fractions
Multiplying Proper & Improper Fractions1. multiply the numerators
2. multiply the denominators
3. reduce
Multiplying Mixed Numbers1. change mixed number to improper fraction
2. follow the multiplication rules for improper fraction
10
1a. 6 X 5
=
1b. 1 X
4
8
2a. 1 X 5
=
2b. 2 X
4
5
3a. 2 X 7
=
3b. 1 X
4
5
4b. 5
4
12
7
9
9
10
3
4a. 4
X
7
5a. 3
X
4
6a. 4
X
9
7a. 8
X
15
4
9
5
6
3
16
10
13
8a. 7 X 2
5
3
5
=
6
5b. 15
=
10a.
11a.
X
16
6b. 5
=
X
12
7b.
=
4
X
8b. 3 X
=
4
9a.
X
7
2
8
X
4
10
=
1
1
2
X
1
5
8
1
6
7
X
4
1
2
30
10
2c. 5 X 1
=
3c. 3 X 5
=
=
11b.
8
8
4c. 1
=
X
5
5c. 5
=
X
9
6c. 4
=
X
5
7c.
=
2
10b.
9
7
3
7
8
8
9
9b.
=
=
12
4
6
1c. 1 X 3
3 X
8
1
5
X
3
4
2
1
3
X
2
1
5
=
3
2
5
X
3
1
3
=
=
=
3
10 =
1
6
=
4
5
5
4
=
3
8c. 1 X 3
=
=
=
=
=
11
Answers Multiplication Fractions
5
14
5
81
7
15
16
1a.
2a.
3a.
4a.
5a.
6a.
7a.
8a.
3
9a.
2
10a.
2
11a.
8
63
5
8
1
12
16
39
1
2
5
1
7
16
5
14
1
10
8
15
4
25
10
1b.
2b.
3b.
4b.
5b.
6b.
7b.
1
8b.
1
9b.
3
10b.
2
11b.
11
21
3
8
3
8
5
7
1
2
3
20
2
15
1
3
64
5
63
15
64
3
1c.
2c.
3c.
4c.
5c.
6c.
7c.
8c.
2
40
1
6
2
15
2
5
3
5
3
12
Fractions - Division
KFC- Keep (1st number), Flip (2nd number) & Change (the sign to
multiplication)
Dividing Mixed Numbers1. change mixed number to improper fraction
2. follow proper & improper division rules
1a. 2 ÷ 8 =
1b. 2 ÷ 2
1c. 2 ÷ 2
10
7 =
8
4
10
4
2a.
3a.
4a.
1
3
=
2b. 3 ÷
2
5
10
5
÷
11
12
=
3b. 8 ÷
2
9
4b. 9
1
8
9
6
÷
÷
25
5a.
3
÷
4
6a.
4
÷
9
7a.
8a.
9a.
10a.
11a.
12 ÷
1
5
5
6
3
12
2
5
7
9
=
÷
14
5b. 4
=
÷
5
6b. 5
=
÷
12
7b.
=
5
÷
3
4
=
3
2
4
÷
3
12
=
1
1
2
÷
3
3
4
2
3
4
÷
1
7
8
9
÷
8b. 3 ÷
2
=
6
=
3
5
10b.
=
11b.
33 =
11
4c. 4
=
÷
11
5c. 5
=
÷
9
6c. 2
=
÷
5
1
3
=
3c. 5 ÷ 25
3
9
3
9
1
9b.
=
2c. 4 ÷ 2
=
7c.
=
5
÷
1
11 =
3
10 =
4
15 =
15
16 =
8c. 2 ÷ 5
=
6
4
6
7
÷
5
12
=
5
1
4
÷
4
2
3
6
1
2
÷
3
1
4
=
=
=
13
Answers Division Fractions
1a.
2a.
2
3a.
4a.
1
5a.
6a.
1
7a.
30
8a.
9a.
6
5
9
10
7
9
2
3
14
10a.
11a.
5
8
2
3
11
24
1
1
2
5
7
15
1b.
2b.
1
3b.
4
7
10
1
14
1c.
2
2
3
3
5
2c.
3c.
2
4b.
1
5b.
4
6b.
1
7b.
8b.
7
4
5
1
4
4c.
4
5c.
1
6c.
1
27
7c.
5
5
8c.
2
9b.
11
10b.
1
11b.
2
23
27
1
2
1
3
2
5
23
35
1
8
14
Fractions – Adding Common Denominator
Adding/Subtracting with Common (same) Denominators1. bring denominator down
2. perform the operation(add/subtract) for numerators
3. reduce
4
2
+
1a.
7
=
+
1b.
11
11
10
1
10
6
+
2a.
=
12
8
6
1
4
+
12
=
10
2
=
8
6
+
3b.
12
=
+
2b.
12
3a.
3
11
=
11
Fractions - Adding Common Denominators
1a.
1b.
6/11
1
2a.
2b.
11/12
1
3a.
3b.
7/12
10/11
Fractions – Subtraction Common Denominator
10
9
−
1a.
12
=
2
−
9
=
9
1
−
1b.
12
3
2a.
9
=
10
10
5
2
−
2b.
12
=
12
Fractions - Subtraction Common Denominator
1a.
1b.
1/12
4/5
2a.
2b.
1/9
1/4
15
Fractions – Adding/Subtracting Unlike Denominator & Mixed Numbers
Adding/Subtracting with Unlike Denominators1. find common denominator
a. find a multiple of both denominators
b. look at your largest denominator, will your smallest denominator go
evenly into your larger denominator
c. if all else fails multiply your denominators by each other
2. multiply your numerator by the same number as you multiplied the
denominator by in that fraction
3. follow adding/subtracting with common denominator rules
Adding/Subtracting with Mixed Numbers1. follow adding/subtracting fraction rules
2. simply perform the operation on your whole numbers
Borrowing and Subtracting Fractions
1. When you do not have a fraction to subtract from you have to borrow from
your whole number.
2. When borrowing if no fraction is available take the denominator of the
mixed number and put it over itself.
3. If a fraction is available but you still must borrow, then borrow from your
whole number and change your numerator by adding your denominator to
your numerator for your new numerator and your denominator stays the
same.
16
1
8
=
3
+ 48
=
4
9
=
1a. 4
9
2a. 5
9
+
3a. 1
3
+
2
4a. 1
6
+
5
5a. 3
4
8
+
6
6a. 4
3
9
+ 12
7a.
12
8a. 5
9a.
10a.
11a.
2
+
5
3
+
7
8
+
9
11
10 +
3
8
1b. 4
6
2b. 3
4
3b. 8
10
+
5
+
12
7b.
=
9
8b. 3
=
+
4
3
2
4
+
3
12
=
1
1
2
+
3
3
4
2
3
4
+
1
7
8
12
6
+
9
=
8
3c. 1
=
6
+
3
=
4
=
9
5
7c.
=
5
10b.
=
11b.
5
8c. 2
=
4
6
7
5
+ 12
=
5
1
4
4
2
3
6
1
2
3
1
4
+
+
=
2
3
=
4
+ 12 =
3
+ 10 =
4
6c. 2
=
3
5
6
+ 10 =
5c. 5
3
+
+
4c. 3
1
9b.
=
2c. 3
3
6b. 5
=
10 +
1
5b. 4
=
=
8
4b. 8
=
1c. 7
+ 15 =
15
+ 16 =
5
+
6
=
=
=
17
1a.
41
1b.
72
2a.
89
1
2b.
144
3a.
7
3b.
5
4b.
12
5a.
7
1
6a.
5b.
3
3
4
7a.
2
12
8a.
5
9a.
10a.
5
11a.
8
30
4c.
1
1
5c.
9b.
5
12
77
90
6c.
2
3
7c.
3
3
3
15
5
8c.
16
5
2
6
23
5
10b.
4
5
4
8b.
4
1
1
9
4
3
3
7b.
24
23
4
5
3
3c.
30
6b.
10
1
1
15
29
12
2c.
40
7
1
3
1
44
7
1
1c.
24
25
1
9
4a.
13
84
11
9
11b.
12
3
9
4
18
1a. 8
9
2a. 2
3
3a. 2
5
4a. 7
-
3
8
=
6
-
7
11 =
2b. 3
-
1
6
3b. 8
-
8
5a. 5
-
6
6a. 5
-
6
7a.
7
-
8a. 12
-
9a.
10a.
11a.
=
=
10 -
1
7
=
24
1
5
-
=
9
-
9
2
7b.
=
4
7
8b. 8
11 =
6
6
11
-
2
3
=
7
1
3
-
4
11
12
10
2
5
-
5
7
10
6
1
6b. 4
=
12
1
5b. 5
3
7
-
7
12
4b. 11
10 =
5
=
5
5
3
-
2
9
1b. 5
-
6
3
-
9
5
-
6
9b.
10b.
=
11b.
=
1c. 1
2
-
1
8
=
2
10 - 11 =
2c. 9
3c. 4
5
-
4
- 16 =
1
5c. 4
=
5
-
4
7c.
=
1
8c. 4
=
17
7
11 -
6
8
=
5
2
3
2
3
4
12
4
5
5
2
9
-
-
3
=
2
6c. 3
=
=
3
4c. 3
=
4
8
-
7
=
2
-
4
=
3
-
7
=
=
=
19
1a.
37
1b.
11
72
2a.
1
7
2b.
1
3
3b.
23
1
4b.
1
7
5b.
7
5
6
8a.
6b.
11
9a.
5
5
10a.
11a.
4
8b.
10
3
10
4c.
9
16
5c.
7
15
6c.
13
9b.
28
7c.
1
3
1
7
6
2
8c.
4
3
7
39
16
10b.
12
7
2
6
33
5
2
7b.
11
29
3c.
18
7
7
110
18
30
7a.
79
24
2
6a.
2c.
35
8
5a.
8
60
30
4a.
3
18
33
3a.
1c.
144
11
2
11b.
12
26
7
45
20
Fractions Extra Practice
1a.
2a.
3a.
4a.
5a.
6a.
7a.
8a.
9a.
10a.
11a.
12a.
13a.
14a.
15a.
16a.
17a.
18a.
7/9 + 1/9 =
12/13 - 10/13 =
30/12 - 14/12 =
32/18 - 7/18 =
25/30 + 2/30 =
6/7 + 11/14 =
7/8 - 3/10 =
28/32 - 7/8 =
7/10 + 5/12 =
5/12 - 3/15 =
13/36 + 5/12=
3 5/8 + 5 4/8=
2 5/7 + 3 2/7=
3 8/11 - 2 10/11=
1/2 X 5/6 =
8/12 X 4/6 =
5/6 x 2 =
2 3/4 X 4/5=
Answers Fractions
1a.
8/9
2a.
2/13
3a.
1 1/3
4a.
1 7/18
5a.
9/10
6a.
1 9/14
7a.
23/40
8a.
0
9a.
1 7/60
Extra
1b.
2b.
3b.
4b.
5b.
6b.
7b.
8b.
9b.
1b.
2b.
3b.
4b.
5b.
6b.
7b.
8b.
9b.
10b.
11b.
12b.
13b.
14b.
15b.
16b.
17b.
18b.
Practice
1/12
21 1/3
15
19 1/2
3/5
2 1/8
1 1/2
1/3
4 1/2
6/28 X 14/36 =
4 X 5 1/3=
4 4/5 X 3 1/8=
6 1/2 X 3
1/3 ÷ 5/9 =
17/9 ÷ 8/9 =
3/12 ÷ 6/36 =
6/54 ÷ 3/9 =
3 ÷ 2/3 =
3 1/2 ÷ 4 6/8 =
7 1/3 ÷ 4/12 =
3 1/2 ÷ 9/18 =
5 1/2 ÷ 1 2/3 =
1 7/9 ÷ 4 2/9 =
1/2 ÷ 1/3 =
12 ÷ 3/15 =
5 ÷ 4 2/9 =
2 1/4 ÷ 2 1/4 =
10a.
11a.
12a.
13a.
14a.
15a.
16a.
17a.
18a.
13/60
7/9
9 1/8
6
9/11
5/12
4/9
1 2/3
2 1/5
10b.
11b.
12b.
13b.
14b.
15b.
16b.
17b.
18b.
14/19
22
7
3 3/10
8/19
1 1/2
60
1 7/38
1
21
Percents
To change a percent to a decimal, move the decimal to the left 2 places. If no decimal is
visible it is understood that it is to the right of the digits.
Percent to Decimals
1a.
91.50%
1b.
91.10%
1c.
21%
2a.
58.70%
2b.
15.70%
2c.
16%
3a.
5%
3b.
7%
3c.
12.30%
4a.
1.25%
4b.
23%
4c.
12.50%
5a.
1.37%
5b.
23.25%
5c.
2%
Answers Percents to Decimals
1a.
0.915
1b.
0.911
1c.
0.21
2a.
0.587
2b.
0.157
2c.
0.16
3a.
0.05
3b.
0.07
3c.
0.1230
4a.
0.0125
4b.
0.23
5a.
0.0137
5b.
0.2325
4c.
5c.
0.1250
0.02
To change a decimal to a percent, move the decimal to the right 2 places.
Decimals to Percents
1a.
0.206
1b.
0.163
1c.
0.125
2a.
0.7
2b.
0.141
2c.
23.5
3a.
0.547
3b.
0.05
3c.
15.75
4a.
0.3
4b.
0.22
4c.
1.25
5a.
0.24
5b.
0.3
5c.
502.5
22
Answers Percents to Decimals
1a.
20.6%
1b.
16.3%
1c.
12.5%
2a.
70%
2b.
14.1%
2c.
2350%
3a.
54.7%
3b.
5%
3c.
1575%
4a.
30%
4b.
22%
4c.
125%
5a.
24%
5b.
30%
5c.
50250%
Percentage problems are set up in this format:
_____ % of _____ is _____
1st
X
2nd
= 3rd
If you have the 1st & 2nd numbers, then you multiply to find the 3rd number.
Calculate the percentages.
1a.
2a.
3a.
4a.
5a.
15% of 50 =
What is 25% of 80 ?
1b.
2b.
What is 20% of 80?
3b.
4b.
37 1/2% of 64 =
5b.
40% of 60 =
What is 30% of 90?
20% of 360 =
1c.
2c.
50% of 50=
3c.
4c.
30 1/4% of 400 =
5c.
What is 75% of 120?
6 2/3% of 45 =
8 1/3% of 36 =
What is 1 1/2% of 200?
What is 12 1/2% of 40?
What is 75% of 24?
If you have the 2nd & 3rd or 1st & 3rd numbers, then you divide to find the 1st or 2nd number .
(3rd number always goes in your box.
1a. 25% of what number is 8?
1b. 50% of what number is 45?
2a. 60 is 40% of what number?
2b. 10% of what number is 6.3?
3a. 7 1/2% of what number is 3.75?
3b. 27 is 67.5% of what number?
4a. 37 1/2% of what number is 24?
4b. 30% of what number is 183?
5a. 80% of what number is 20?
5b. 2 1/2% of what number is 25?
6a. 230 is 50% of what number ?
6b. 75% of what number is 90?
23
Solve the percent problems.
15 is what percent of 60?
1b.
45 is what percent of 50?
2a. What percent of 20 is 16?
2b.
9 is what percent of 90?
3a. 7 is what percent of 20?
3b.
14 is what percent of 200?
4a. What percent of 85 is 17?
4b.
What percent of 0.92 is 0.23?
5a. 15 is what percent of 75?
5b.
40 is what percent of 320?
6a. What percent of 90 is 27?
6b. 90 is what percent of 120?
1a.
Answers Calculate the Percentages
1a.
7.5
1b.
27
1c.
3
2a.
20
2b.
72
2c.
3
3a.
24
3b.
90
3c.
3
4a.
16
4b.
25
5a.
24
5b.
121
1a.
32
1b.
90
4c.
5c.
5
18
Answers Solve the Percent Problems
2a.
150
2b.
63
1a.
2a.
25%
80%
1b.
2b.
90%
10%
3a.
50
3b.
40
3a.
35%
3b.
7%
4a.
64
4b.
610
4a.
20%
4b.
25%
5a.
25
5b.
1000
6a.
460
6b.
120
5a.
6a.
20%
30%
5b.
6b.
13%
75%
24
Percent Extra Practice
1a.
75% of 8 = ___
2a.
30% of 80 = __
3a.
35% of 18 = __
4a.
25% of 96 = __
5a.
12 ½% of 84= ___
6a.
15% of what number is 3?
7a.
50% of what number is 19?
8a.
10% of what number is 10?
9a.
20% of what number is 16?
10a.
40% of what number is 2?
11a.
What percent of 36 is 9?
12a.
What percent of 22 is 25?
13a.
60 is what percent of 50?
14a.
50 is what percent of 25?
15a.
20 is what percent of 30?
Answers Percent Extra Practice
1a.
6
6a.
2a.
24
7a.
3a.
6.3
8a.
4a.
24
9a.
5a.
10.5
10a.
20
38
100
80
5
11a.
12a.
13a.
14a.
15a.
25%
114%
120%
200%
66%
25
Signed Numbers/Integers
Positive Numbers – greater than zero (doesn’t have a sign)
Negative Numbers – are less than zero (always written with a negative
sign - )
Zero has no sign and is always written as 0
Adding Integers

Same sign – add the number s & give that sign
o (+) + (+) = (+)
o (-) + (-) = (-)
1a.
5 + 6 = ____
1b.
9 + 9 = ____
2a.
-3 + -4 = ____
2b.
-3 + -5 = ____
3a.
-12 + -9 = ____
3b.
22 + 4 = ____
4a.
8 + 3 = ____
4b.
-5 + -4 = ____
5a.
-5 + -2 = ____
5b.
-1 + -8 = ____
6a.
-15 + -6 = ____
6b.
-25 + -10 = _____
7a.
12 + 7= ____
7b.
5 + 12 = ____
8a.
-6 + -1 = ____
8b.
-4 + -2 = ____
9a.
-13 + -12 = ____
9b.
-10 + -15 = ____
10a.
9 + 7 = ____
10b.
6 + 5= ____

opposite signs - subtract the two numbers, give the sign of the greater number
o (+ larger number) + (- smaller number) = (+) ex. 5 + -2 = 3
o (+ smaller number) + (-larger number) = (-) ex. 2 + -5 = -3
1a.
5 + -6 = ____
1b.
-9 + 7= ____
2a.
-3 + 3= ____
2b.
-3 + 5= ____
3a.
12 + -9 = ____
3b.
-22 + 4= ____
4a.
8 + -3 = ____
4b.
5 + -4= ____
5a.
-5 + 6= ____
5b.
-1 + 8= ____
6a.
15 + -6 = ____
6b.
25 + -10 = _____
7a.
-12 + 7 = ____
7b.
5 + -12= ____
8a.
-6 + 1= ____
8b.
4 + -2= ____
9a.
13 + -12 = ____
9b.
10 + -15= ____
10a.
9 + -7 = ____
10b.
6 + -5= ____
26
Answers
Adding Integers Same Signs
1a. 11
1b. 18
2a. -7
2b. -8
3a. -21
3b. 26
4a. 11
4b. -9
5a. -7
5b. -9
6a. -21
6b. -35
7a. 19
7b. 17
8a. -7
8b. -6
9a. -25
9b. -25
10a. 16
10b. 11
Adding Integers Different Signs
1a. -1
1b. -2
2a. 0
2b. 2
3a. 3
3b. -18
4a. 5
4b. 1
5a. 1
5b. 7
6a. 9
6b. 15
7a. -5
7b. -7
8a. -5
8b. 2
9a. 1
9b. -5
10a. 2
10b. 1
Subtracting Integers

Change the sign of the second number, change the subtraction sign to addition then follow your
addition rules
1a.
5 - (-6) = ____
1b.
-9 - 7= ____
2a.
-3 - 5= ____
2b.
-3 - 9= ____
3a.
12 – (-9) = ____
3b.
-22 - 4= ____
4a.
8 – (-3) = ____
4b.
5 - 4= ____
5a.
-5 - 6= ____
5b.
-1 - 8= ____
6a.
15 - (-6) = ____
6b.
25 – (-10) = _____
7a.
-12 - 7= ____
7b.
5 - 12= ____
8a.
-6 - 1= ____
8b.
4 - 2= ____
9a.
13 – (-12) = ____
9b.
10 – (-15)= ____
10a.
9 – (-7) = ____
10b.
6 – (-5)= ____
27
Answers Subtracting Integers
1a.
11
2a.
-8
3a.
21
4a.
11
5a.
-11
6a.
21
7a.
-19
8a.
-7
9a.
25
10a.
16
1b.
2b.
3b.
4b.
5b.
6b.
7b.
8b.
9b.
10b.
-16
-12
-26
1
-9
35
-7
2
25
11
Multiplying Integers

Same signs = positive
Opposite signs = negative
Same sign – multiply numbers and make a positive
o (+) X (+) = (+)
o (-) X (-) = (+)
1a.
4
X
2
= ___
1b.
-5 X -12= ____
2a.
3
X
3
= ___
2b.
-4 X -5= ____
3a.
5
X
8
= ___
3b.
-9 X -6= ____
4a.
6
X
4
= ___
4b.
-10 X -4= ___
5a.
7
X
9
= ___
5b.
-8 X -2 = ___

Opposite sign – multiply numbers and make a negative
o (+) X (-) = (-)
o (-) X (+) = (-)
1a.
-5 X 12 = ____
6a.
7 X -9 = ___
2a.
-4 X 5= ____
7a.
-6 X 4= ___
3a.
9 X -6= ____
8a.
5 X -8 = ___
4a.
10 X -4= ___
9a.
3 X -3 = ____
5a.
-8 X 2= ___
10a.
-4 X 2= ____

Multiplying more than two signed numbers
o If there are an even number of negative signs, give the product a positive sign.
o If there are an odd number of negative signs, give the product a negative sign.
28
Multiplying Integers Same Signs
1a.
2a.
3a.
4a.
5a.
8
9
40
24
63
1b.
2b.
3b.
4b.
5b.
60
20
54
40
16
Multiplying Integers Different Signs
1a.
2a.
3a.
4a.
5a.
-60
-20
-54
-40
-16
6a.
7a.
8a.
9a.
10a.
-63
-24
-40
-9
-8
Dividing Integers

Same signs = positive
Opposite signs = negative
Have the same sign, divide the numbers and give the quotient a positive sign.
1a.
20 ÷ 4= ____
6a.
-27 ÷ -9 = ___
2a.
25 ÷ 5= ____
7a.
-24 ÷ -4= ___
3a.
9 ÷ 3= ____
8a.
-40 ÷ -8 = ___
4a.
16 ÷ 4= ___
9a.
-3 ÷ -3 = ____
5a.
8 ÷ 2= ___
10a.
-4 ÷ -2= ____

Have opposite signs, divide the numbers and give the quotient a negative sign.
1a.
-20 ÷ 4= ____
6a.
27 ÷ -9 = ___
2a.
25 ÷ -5= ____
7a.
-24 ÷ 4= ___
3a.
9 ÷ -3= ____
8a.
40 ÷ -8 = ___
4a.
16 ÷ -4= ___
9a.
3 ÷ -3 = ____
5a.
-8 ÷ 2= ___
10a.
-4 ÷ 2= ____
29
Dividing Integers Same Signs
1a.
2a.
3a.
4a.
5a.
6a.
7a.
8a.
9a.
10a.
5
5
3
4
4
3
6
5
1
2
Dividing Integers Different Signs
1a.
2a.
3a.
4a.
5a.
6a.
7a.
8a.
9a.
10a.
-5
-5
-3
-4
-4
-3
-6
-5
-1
-2
Integers Extra Practice
1a.
-9 X -13 =
1b.
-4 + -5 =
2a.
-36 X -3 =
2b.
-10 + 2 =
3a.
11 X -4 =
3b.
-17 + -19 =
4a.
-5 X 12 =
4b.
35 + -19 =
5a.
8 X -37 =
5b.
-3 + 5 =
6a.
-65 X -8 =
6b.
-7 + 3 =
7a.
48 ÷ -3 =
7b.
-23 + 6 =
8a.
68 ÷ -17 =
8b.
-25 + -32 =
9a.
-51 ÷ -17 =
9b.
-10 + -5 =
10a.
-91 ÷ 13 =
10b.
-15 + -7 =
11a.
64 ÷ -16 =
11b.
12 + 9 =
12a.
-804 ÷ 67 =
12b.
7 - -5 =
13a.
-64 ÷ 8 =
13b.
-3 - -13=
14a.
-5 + 6 =
14b.
-9 - -6 =
15a.
-9 + -7 =
15b.
5 + -32 =
16a.
19 - -7 =
16b.
-25 + -3 =
17a.
-18 - -13 =
17b.
-2 + 2 =
18a.
-18 - 37 =
18b.
-21 + 3 =
30
Integers Extra Practice Answers
1a.
117
1b.
2a.
108
2b.
3a.
-44
3b.
4a.
-60
4b.
5a.
-296
5b.
6a.
520
6b.
7a.
-16
7b.
8a.
-4
8b.
9a.
3
9b.
-9
-8
-36
16
2
-4
-17
-57
-15
10a.
11a.
12a.
13a.
14a.
15a.
16a.
17a.
18a.
-7
-4
-12
-8
1
-16
26
-5
-55
10b.
11b.
12b.
13b.
14b.
15b.
16b.
17b.
18b.
-22
21
12
10
-3
-27
-28
0
-18
31
Exponent/Power
Exponent/Power – a number multiplied by itself one or more times. Four to the third
power (first example) means 4 X 4 X 4 = 64 (4 X 4 = 16 X 4). A number raised to the
second power is known as a square and a number raised to the third power is known as
cubed.
1. 43 = ___ 2. 63 = ____ 3. 83 = ___ 4. 52 = ___ 5. 34 = ____
Any number to the power of one is that number. Any number to the power of zero equals 1.
1. 41 =_4_ 2. 50= _1_ 3. 61 = ___ 4. 20 = ___ 5. 90 = ___ 6. 31 = ___
Square Roots
A number multiplied by itself equals that number. A positive number has two square
roots- a positive and/or negative. If a number is on the outside of the “check mark”,
find your square then multiply by that number. If performing an operation with square
roots, find your squares then perform the operation.
1a.
√100
1b.
3√4
1c.
√1
2a.
√25
2b.
√16
2c.
2√49
Answer Exponent/Power
1
1
64
2
2
216
3
3
512
4
4
25
5
5
81
6
4
1
6
1
1
3
Answers Square Roots
1a.
1b.
10
2a.
2b.
5
6
4
1c.
2c.
1
14
32
Square Roots/Exponents/Powers Extra Practice
√4
1a.
1b.
52
2b.
43
3b.
24
4b.
32
5b.
81
6b.
12
7b.
70
8b.
62
9b.
21
√9
2a.
√81
3a.
√49
4a.
√36
5a.
√16
6a.
√64
7a.
2√25
8a.
9a.
10a.
3√100
4√36
10b. 80
Answers Square Roots/Exponents/Powers Extra Practice
1a.
2
1b.
2a.
3
2b.
3a.
9
3b.
4a.
7
4b.
5a.
6
5b.
6a.
4
6b.
7a.
8
7b.
8a.
10
8b.
9a.
30
9b.
10a.
24
10b.
25
64
16
9
8
1
1
36
2
1
33
Absolute Value
Absolute Value is the POSITIVE value of a number regardless of its sign. The symbol for
absolute value is l l (2 straight lines).
1. l -4 l
2. l 7
Absolute
1.
2.
3.
l
3.
l
0–9l
4. l -1- (-6) l
5. l -4 +6 l
6. l 0
l
Value
4.
5.
6.
4
7
9
5
2
0
Scientific Notation
Scientific notation is a shorter way of writing numbers with multiple zeros. In scientific
notation a number is written as the product of two factors. The first is a number between
1 and 10. The second factor is a power of 10. A positive exponent means you move the
decimal to the right a negative exponent means you move the decimal to the left.
7.5 X 103= 7,500
4 X 10-2= 0.04
1a. 6.3 X 102 = ____________
1b. 9 X 106=__________________
2a. 8.5 X 10-5= _____________
2b. 7 X 10-6=__________________
3a. 5,0000 = _______________
3b. 30, 000 = __________________
4a. 0.03 = _________________
4b. 0.0075 = __________________
Answers Scientific Notation
1a.
630
2a.
0.000085
3a.
4a.
5 X 104
3 X 10-2
1b.
2b.
3b.
4b.
9,000,000
0.000007
3 X 104
7.5 X 10-3
34
ORDER OF OPERATIONS
Please Excuse My Dear Aunt SallyParenthesis, Exponents, Multiplication, Division, Addition, Subtraction
(Left to Right)
1. 6 ÷ 2 + 5 X 4=
2. (3 + 62) + 9 =
3. 9 − (9 − 7 × 52 × 9) =
4. (2 − 5 − 4 − 7) =
5. (6 + 8) + (63 ÷ 3) + 4 =
6. (25 X 3) + (15 -3) =
7. (6 + 9) − 7 =
8. 3(34-19) =
9. (82 × 33) − 1 =
10. (4 − 5 − 2 ÷ 2) =
11. 15 ÷ 5 X 3
12. 6 X 3 ÷ 9 – 1 =
13. (3 + 9) + 4 =
14. 96 ÷ 12 (4) ÷ 2
15. 52 × (8 − 92 + 3) =
16. (7 × 9 − 8 − 4) × 4 =
17. (8 + 6 + 1) =
18. (62 × 9 + 9) − 2 =
19. (5 − 6) − 1 =
20. 7 − (93 − 43 + 8 − 6) =
21. 36 - 9
6-3
22. (7 − 12 − 5) =
23. (9 + 5) + 8 =
24. (23 ÷ 22) + 92 − 9 =
25. (3 − 53 − 9) =
26. (8 ÷ 8) + 3 + 4 =
28. 4[ 12 ( 22 - 19 ) -3 X 6 ]
29. 2[ 5 (4+6) – 3] =
27.
86 - 11
9+6
30. (7 − 1 × 2 − 83 − 6) =
35
Order of Operations
1.
2. 48
23
4.
5. 90
-14
7.
8. 45
8
10. -2
11. 9
13. 16
14. 16
16. 204
17. 15
19. -2
20. -660
22. 1
23. 22
25. -131
26. 8
28. 72
29. 94
3.
6.
9.
12.
15.
18.
21.
24.
27.
30.
1575
87
1727
1
-1750
331
9
74
5
-513
Order of Operations
1a.
6÷2+5X4=
2a.
12 ÷ 3 + 12 ÷ 4 =
3a.
6 X 3 ÷ 9 -1=
4a.
15 ÷ 5 X 3=
5a.
6a.
36 ÷ (4 X 3) =
24 ÷8 - 2 =
7a.
3(7+4)-18 ÷ 9 =
8a.
(5+3)2
9a.
6(7-5) + 4 =
10a.
28 ÷ 4 + 28 ÷ 7 =
11a.
5[3 + 4(22)] =
12a.
32[(11+3) -4] =
36
Answers Order of Operations
1a.
23
8a.
2a.
7
9a.
3a.
1
10a.
4a.
9
11a.
5a.
3
12a.
6a.
1
7a.
31
64
16
11
95
90
Combining Like Terms
Combine like terms- you can only combine those that are EXACTLY alike, letters &
exponents. You are NOT solving the equation.
1. 5a + 5a + 4b
2. 4a + 3b + 2c
3. 17r – 3r – 2t
4. 4a2 + 5a2-2a2
Answers Combine Like Terms
1.
10a + 4b
2.
4a + 3b +2c
3.
14r - 2t
4.
5.
6.
5. 3c3+5c2+ c 6. 5a3+4b+ 4c2
7a2
3c3+5c2+c
5a3+4b+4c2
Combine Like Terms Extra Practice
1a.
2xy + 5xy -4xy
2a.
4r + 19 - 8
3a.
9 + 5x + 4x +6x
4a.
4k + 3 - 2k + 8 + 7k -16
5a.
6ab + 7c
6a.
1a + 2s + 3t + 4j
Answers Combine Like Terms Extra Practice
1a.
3xy
2a.
4r +11
3a.
9 + 15X
4a.
9k -5
5a.
6ab + 7
6a.
1a + 2s + 3t + 4j
37
Algebra
Variables (letters) represent the unknown. In algebra you try to solve for the unknown,
often doing the opposite operation. A letter by itself has an understood 1 in front of it.
1.
5.
9.
13.
17.
10 + y = 20
1-x=6
5+y=1
8+y=9
5 + 4x= 25
Answers Algebra
1. 10
2.
5. -5
6.
9. -4
10.
13. 1
14.
17. 5
18.
2.
6.
10.
14.
18.
10
-4
48
6
3
-10 y = -100
3.
-2 + x = -11
7.
-4 - y = 0
y + 9 = 57
8 y + 9 = 57
8 y + 9 = 33
3.
7.
11.
15.
19.
-10 + y = 20
11.
15.
19.
-9
30
6
9
3
3+x=9
4x = 36
3 + 7x= 24
4.
8.
12.
16.
20..
4.
8.
12.
16.
20.
9 y = 99
-7 + y = -17
x + 9 = 29
9x = 63
x + 9x = 30
11
-10
20
7
3
38
Algebra Extra Practice 1
1a.
1b.
x+3=9
4s = 20
1c.
5y = 32.5
2a.
y - 12 = 37
2b.
n + 10 = 24
2c.
7y = 16.8
3a.
3z = 39
3b.
x-3=7
3c.
x/5 = 4
4a.
a/15 = 3
4b.
8n = 48
4c.
y/3 = 6
5a.
n + (-4) = 15 5b.
6y = 54
5c.
y/3 = 9
6a.
n/3 = 12
6b.
y + 2.75 = 7.5
6c.
x - 7 = 12
7a.
x + 6 = 15
7b.
n + 9 = 14
7c.
x + 23 = 47
8a.
9a = 72
8b.
4x = -32
8c.
x + (-5) = 8
9a.
a+5=2
9b.
x -12 =13
9c.
b - 3 = -7
10a.
6p = 42
10b.
4n = -28
10c.
5q = 120
Answers Algebra Extra Practice 1
1a.
6
1b.
5
1c.
6.5
2a.
49
2b.
14
2c.
2.4
3a.
13
3b.
10
3c.
20
4a.
45
4b.
6
18
5a.
19
5b.
9
4c.
5c.
6a.
36
6b.
4.75
6c.
19
7a.
9
7b.
5
7c.
24
8a.
8
8b.
-8
8c.
13
9a.
-3
9b.
25
-4
10a.
7
10b.
-7
9c.
10c
27
24
39
Algebra Extra Practice 2
1a.
2a.
3a.
4a.
5a.
6a.
7a.
8a.
9a.
4 + b = - 13
x + 13 = 9
18 + m = - 57
b + 63 = 44
g + -19 = 24
-12 + k = -37
x + (-21) = -59
m + 37 = 14
a - 16 = 33
10a.
y - 8 = -22
11a.
y + -7 =19
12a.
b + -14 = 6
13a.
z - -7 = -19
14a.
t - -34 = 66
15a.
4y = -52
16a.
-9m = 99
17a.
-3y = 42
18a.
-13a=52
1b.
2b.
3b.
4b.
5b.
6b.
7b.
8b.
9b.
10b
.
11b
.
12b
.
13b
.
14b
.
15b
.
16b
.
17b
.
18b
.
Answers Algebra Extra Practice 2
1a.
-17
1b.
-49
2a.
-4
2b.
13
3a.
-75
3b.
-93
z + 16 = -33
b + 4 = 17
w + 42 = -51
z + 13 = -22
-17 + z = 5
p + (-8) = -21
q + (-3) = 17
x + (-100) = 283
t - -16 = 9
x - 25 = -18
c - -9 = 74
k - 12 = -14
m - -21 = 0
y - -47 = 42
-15h = -60
-3t = 51
-6a = 84
21s = 315
10a.
11a.
12a.
-14
26
20
10b.
11b.
12b.
7
65
-2
40
4a.
5a.
6a.
7a.
8a.
9a.
-19
43
-25
-38
-23
49
4b.
5b.
6b.
7b.
8b.
9b.
-35
22
-13
20
383
-7
13a.
14a.
15a.
16a.
17a.
18a.
-26
32
-13
-11
-14
-4
13b.
14b.
15b.
16b.
17b.
18b.
-21
-5
4
-17
-14
15
Distributing
Multiply the number outside the parenthesis by the items inside the parenthesis.
Combine like terms first. If an exponent is involved you must add the exponents while
multiplying the whole numbers. If one is not visible it is an understood 1.
1. 4n(3n2 + 2) =
2. 5c(c + 7) =
3. 6a2(2a3 – 5)=
4. 5x + y(4y2-3y)=
5. 7x(3 + 4y)=
6. 2a(a+3)=
7. 18z(3 -2)=
8. 3a +2b(4-3)=
9. -4(3a + 2b) -2ab= 10. 3x – 2y(4x+3y)= 11. -4(2c +3d) -3d = 12. -1(5x + 5y) –y =
Answers Distributing
1.
2.
3.
4.
12n3+8n
5c2+ 35c
12a5-30a2
5x+4y3-3y2
5.
6.
7.
8.
21x + 28xy 9.
2a2+6a
18z
3a+2b
10.
11.
12.
-12a -8b-2ab
3x-8xy-6y2
-8c-15d
-5x-6y
Distributing
1a.
5(x + 4) =
2a.
4(2a + 6b) =
3a.
2m(3m +2)=
4a.
3p(8 - 6p) =
5a.
8z(2z + 3z2 +3z3)
6a.
5x-y(3x - y)
7a.
6xy(3x2-4y2)
Answers Distributing
41
1a.
2a.
3a.
4a.
5x + 20
8a + 24b
6m2+4m
24p - 18p2
5a. 16z2 + 24z3 + 24z4
6a. 5x - 3xy +y2
7a. 18x3y - 24xy3
42
Related documents