Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigg County Adult Education TABE Math Computation Refresher Course Please return this workbook back to the Trigg County Adult Education Center. Do NOT write in this booklet. There are no example problems for a reason- we want you to attend our refresher classes. You should begin in the class you received the first minus (-) or progress (P) sign in. Ex: if you received a minus sign in the integer section don’t start with algebra class! In an effort to cut down on our supply usage, NO additional practice pages will be handed out. If you need more practice you may go back and rework these pages. Some other suggestions include coming into the center and write problems out of our classroom textbooks (NO COPIES ARE MADE) or search the internet. Clients will NOT be allowed to retest unless this booklet is returned, along with the completion of two math refresher courses and additional independent study hours. TABLE OF CONTENTS Decimals 2-5 Fractions 6 - 21 Percents 22 - 25 Integers 26 – 31 Exponents/Powers/Square Roots/Scientific Notation/Absolute Value 32 - 34 Order Of Operations 35-36 Combining Like Terms 37 Algebra 38-40 Distributing 41 1 Decimal-Addition To add or subtract decimals, you must first line up your decimals. Remember that if no decimal is visible it is understood that it is to the right of the whole number. You may need to add zeros to serve as placeholders. 1a. 0.2 + 0.6 = 1b. 0 + 0.47 = 2a. 0.267 + 0.4 = 2b. 0.027 + 0.42= 3a. 0.985 + 0.44= 3b. 0.8 + 0.8 = 4a. 0.74 + 0.4 = 4b. 0.47 + 0.6= 5a. 0.62 + 0.6 = 5b. 0.7 + 0.76 = Decimals - Subtraction 1a. 4 - 2.48 = 1b. 4 - 0.6 = 2a. 18 - 5.8 = 2b. 6 - 4.1 = 3a. 9.46 - 5 = 3b. 7 - 4 = 4a. 2 - 0.42 = 4b. 19 - 6.3 = 5a. 16 - 5.7 = 5b. 15 - 7.81= 2 Answers Decimals- Addition 1a. 0.8 1b. 0.47 2a. 0.667 2b. 0.447 3a. 1.425 3b. 1.6 4a. 1.14 4b. 1.07 5a. 1.22 5b. 1.46 Answers Decimals- Subtraction 1a. 1.52 1b. 3.4 2a. 12.2 2b. 1.9 3a. 4.46 3b. 3 4a. 1.58 4b. 12.7 5a. 10.3 5b. 7.19 Decimals - Multiplication To multiply decimals, multiply the numbers as in a regular multiplication problem. Remember with multiplication you can swap your numbers around. It’s easier if you put the number with the most digits on top. Count the number of decimal places in the problem, the answer is the same number of decimal places. 1a. 0.7 X 0.07 = 1b. 0.6 X 0.1 = 2a. 0.01 X 0.1= 2b. 0.09 X 0.9 = 3a. 0.8 X 0.04 = 3b. 0.4 X 0.7 = 4a. 0.06 X 0.3 = 4b. 0.7 X 0.08 = 5a. 0.4 X 0.6 = 5b. 0.4 X 0.1 = 3 Answers Decimals- Multiplication 1a. 0.049 1b. 0.06 2a. 0.001 2b. 0.081 3a. 0.032 3b. 0.28 4a. 0.018 4b. 0.056 5a. 0.24 5b. 0.04 Decimals - Division HINT: FIRST number (dividend) goes always goes IN your box. To divide a decimal by a whole number, divide as normally would and move your decimal straight up. To divide a decimal by a decimal, first change the problem to a new problem with a whole number divisor (number on the outside of the box). To do this, move the decimal as far to the right as possible. Move the decimal the same number of places on the inside of the box. If a decimal is not already inside the box, it is understood that it is to the right of the last number. You may have to add zero’s to your dividend in order to place the zero in the correct spot. Then move your decimal straight up. 1a. 0.45 ÷ 3 = 1b. 0.52 ÷ 2 = 2a. 0.00 ÷ 6 = 2b. 0.96 ÷ 2 = 3a. 0.78 ÷ 3 = 3b. 0.42 ÷ 6 = 4a. 1.47 ÷ 0.07 = 4b. 0.99 ÷ 0.09 = 5a. 1.72 ÷ 0.02 = 5b. 1.68 ÷ 0.04 = 6a. 1.76 ÷ 0.02 = 6b. 0.92 ÷ 0.04 = 7a. 1.86 ÷ 0.06 = 7a. 1.55 ÷ 0.05= 8a. 0.84 ÷ 0.06 = 8a. 1.18 ÷ 0.02 = 4 1a. 2a. 3a. 4a. 5a. 6a. 7a. 8a. Answers Decimals- Division 1b. 0.15 2b. 0 3b. 0.26 4b. 21 5b. 86 6b. 22 7b. 31 14 8b. 0.26 0.48 0.07 11 42 23 31 59 Decimal Extra Practice 1a. 2a. 3a. 4a. 5a. 6a. 7a. 8a. 9a. 10a. 11a. 12a. 13a. 14a. 15a. 16a. 17a. 18a. 3.5 + 7.3 = 26.73 + 13.05= 90.47 + 14.3 = 47.7 - 39.09 = 0.593 - 0.3879 = 593.4 - 487.92 = 12.5 + 13.7 = 119 - 105.7 = 7.35 + 5.9 = 2.8 ÷ 7 = 0.128 ÷ 8 = 0.036 ÷ 6 = 50 ÷ 2.5 = 0.0078 ÷ 0.003 24 ÷ 0.3 = 1.69 ÷ 1.3 0.48 ÷ 0.2 25 ÷ 0.05 1b. 2b. 3b. 4b. 5b. 6b. 7b. 8b. 9b. 10b. 11b. 12b. 13b. 14b. 15b. 16b. 17b. 18b. 3.6 ÷ 0.04 = 0.56 ÷ 0.007 = 14.3 X 7.8 = 5.2 X 2 = 45 X 7.3 = 213 X 6.7 = 15.2 X 21.3 = 12.3 X 4.3 = 1.503 X 4 = 7.82 X 6.8 = 452.8 X 12 = 54.02 X 0.2= 21 X 0.5 = 1.327 X 91= 5.42 X 0.63= 4.85 X 5.6= 4.20 X 4.5= 5.04 X 6.1 = 5 Answers Decimal Extra Practice 1a. 10.8 2a. 39.78 3a. 104.77 4a. 8.61 5a. 0.2051 6a. 105.48 7a. 26.2 8a. 13.3 9a. 13.25 1b. 2b. 3b. 4b. 5b. 6b. 7b. 8b. 9b. 90 80 111.54 10.4 328.5 1427.1 323.76 52.89 6.012 10a. 11a. 12a. 13a. 14a. 15a. 16a. 17a. 18a. 0.4 0.016 0.006 20 2.6 80 1.3 2.4 500 10b. 11b. 12b. 13b. 14b. 15b. 16b. 17b. 18b. 53.176 5433.6 10.804 10.5 120.757 3.4146 27.16 18.9 30.744 Fraction Terminology Fraction- part of a whole part _____ line Whole numerator represents division denominator proper fraction- numerator is smaller than denominator improper fraction- numerator is larger than denominator mixed number- whole number and fraction Any time there is a whole number by itself, put it over the whole number 1 to make it into fraction form. If there is a remainder make it into fraction form using the remainder as your numerator and keep the same denominator reduce/simplify/lowest terms- all fractions should be reduced determine if there is a (same) number that will go into the numerator and denominator both evenly 6 Simplify fractions Ask- What is the largest number that will go EVENLY into both numbers? Divide each number by that number to reduce the fraction down. 4 1a. 7 1b. 20 1c. 4 56 40 3 6 6 2a. 2b. 2c. 15 45 9 5 16 12 3a. 3b. 3c. 50 48 3 6 4a. 4b. 30 58 6 7 5a. 5b. 27 9 4c. 33 20 5c. 12 28 50 16 21 6 6a. 6b. 6c. 18 24 48 25 36 42 7a. 7b. 7c. 50 63 56 18 6 35 8a. 8b. 32 8c. 48 49 7 Answers Simplifying Fractions 1a. 2a. 3a. 4a. 5a. 6a. 7a. 8a. 1b. 2b. 3b. 4b. 5b. 6b. 7b. 8b. 1 1/5 1/10 1/10 ½ 8/9 ½ 9/16 1c. 2c. 3c. 4c. 5c. 6c. 7c. 8c. 1/8 2/15 1/3 3/29 ¼ 7/8 4/7 1/8 1/2 2/3 4/9 3/11 2/5 1/8 3/4 5/7 Improper Fractions to Mixed Numbers improper fraction to a mixed number- divide your denominator into your numerator 1a 14 1b 33 1c 45 1d 44 1e 11 8 6 9 16 2 1f 28 1g 50 10 4 2a 30 2b 26 2c 18 2d 36 2e 12 9 8 6 10 3 2f 30 2g 16 7 8 3a 22 3b 16 3c 40 3d 36 3e 45 7 3 9 11 6 3f 27 3g 18 3 6 4a 4f 5 4 4b 56 4c 42 4d 15 4e 7 20 3 5 6 9 6 4g 50 5 Answers Improper Fractions to Mixed Number 1a 1 3/4 1b 5 ½ 1c 5 1d 2 3/4 1e 5 1/2 1f 2 4/5 1g 12 1/2 2a 3 1/3 2b 3¼ 2c 3a 3 1/7 3b 5 1/3 3c 4a 1 1/4 4b 8 3 4 4/9 2d 3 3/5 2e 4 2f 4 2/7 2g 3d 3 3/11 3e 7 1/2 3f 4c 2 1/10 4d 5 9 2 3g 3 4e 2 1/2 4f 1 1/2 4g 10 8 Mixed Number to Improper Fraction mixed number to an improper fraction- multiply the denominator times the whole number, then add the product and numerator, that sum becomes the numerator and the denominator stays the same 1a. 1 2/8 1b. 2 1/7 1c. 7 6/10 2a. 1 1/10 2b. 3 2/7 2c. 6 4/5 3a. 1 5/8 3b. 9 1/5 3c. 8 8/10 4a. 2 3/4 4b. 1 4/7 4c. 5 1/3 5a. 8 3/4 5b. 9 1/2 5c. 4 3/5 6a. 6 1/7 6b. 2 1/8 6c. 5 1/4 7a. 4 3/5 7a. 3 3/4 7c. 3 5/9 8a. 8 1/9 8a. 5 6/7 8c. 4 1/3 Answers Mixed Numbers to Improper Fractions 1a. 10/8 1b. 15/7 2a. 11/10 2b. 23/7 1c. 76/10 2c. 34/5 3a. 13/8 3b. 46/5 3c. 88/10 4a. 11/4 4b. 11/7 5a. 35/4 5b. 19/2 4c. 16/3 5c. 23/5 6a. 43/7 6b. 17/8 7a. 23/5 7a. 15/4 6c. 21/4 7c. 32/9 8a. 73/9 8a. 41/7 8c. 13/3 9 Fraction to Decimal fraction to a decimal- divide your numerator by your denominator 1a 1 3 1b 1 4 1c 1 2 1d 3 4 1e 7 8 1f 5 9 1g 1 5 2a 2 5 2b 3 5 2c 4 5 2d 1 6 2e 5 6 2f 1 7 2g 2 7 3a 3 7 3b 4 7 3c 5 7 3d 6 7 3e 7 7 3f 2 9 3g 1 9 4a 4 9 4b 6 9 4c 7 9 4d 1 10 4e 3 10 4f 6 10 4g 7 10 Answers Fractions to Decimals 1a. .33 1b. .25 1c. .50 1d. .75 1e. .88 1f. .55 1g. .2 2a. .4 2b. .6 2c. .8 2d. .16 2e. .83 2f. .14 2g. .29 3a. .43 3b. .57 3c. .71 3d. .86 3e. 1 3f. .22 3g. .11 4a. .44 4b. .66 4c. .77 4d. .1 4e. .3 4f. .6 4g. .7 Multiplying Fractions Multiplying Proper & Improper Fractions1. multiply the numerators 2. multiply the denominators 3. reduce Multiplying Mixed Numbers1. change mixed number to improper fraction 2. follow the multiplication rules for improper fraction 10 1a. 6 X 5 = 1b. 1 X 4 8 2a. 1 X 5 = 2b. 2 X 4 5 3a. 2 X 7 = 3b. 1 X 4 5 4b. 5 4 12 7 9 9 10 3 4a. 4 X 7 5a. 3 X 4 6a. 4 X 9 7a. 8 X 15 4 9 5 6 3 16 10 13 8a. 7 X 2 5 3 5 = 6 5b. 15 = 10a. 11a. X 16 6b. 5 = X 12 7b. = 4 X 8b. 3 X = 4 9a. X 7 2 8 X 4 10 = 1 1 2 X 1 5 8 1 6 7 X 4 1 2 30 10 2c. 5 X 1 = 3c. 3 X 5 = = 11b. 8 8 4c. 1 = X 5 5c. 5 = X 9 6c. 4 = X 5 7c. = 2 10b. 9 7 3 7 8 8 9 9b. = = 12 4 6 1c. 1 X 3 3 X 8 1 5 X 3 4 2 1 3 X 2 1 5 = 3 2 5 X 3 1 3 = = = 3 10 = 1 6 = 4 5 5 4 = 3 8c. 1 X 3 = = = = = 11 Answers Multiplication Fractions 5 14 5 81 7 15 16 1a. 2a. 3a. 4a. 5a. 6a. 7a. 8a. 3 9a. 2 10a. 2 11a. 8 63 5 8 1 12 16 39 1 2 5 1 7 16 5 14 1 10 8 15 4 25 10 1b. 2b. 3b. 4b. 5b. 6b. 7b. 1 8b. 1 9b. 3 10b. 2 11b. 11 21 3 8 3 8 5 7 1 2 3 20 2 15 1 3 64 5 63 15 64 3 1c. 2c. 3c. 4c. 5c. 6c. 7c. 8c. 2 40 1 6 2 15 2 5 3 5 3 12 Fractions - Division KFC- Keep (1st number), Flip (2nd number) & Change (the sign to multiplication) Dividing Mixed Numbers1. change mixed number to improper fraction 2. follow proper & improper division rules 1a. 2 ÷ 8 = 1b. 2 ÷ 2 1c. 2 ÷ 2 10 7 = 8 4 10 4 2a. 3a. 4a. 1 3 = 2b. 3 ÷ 2 5 10 5 ÷ 11 12 = 3b. 8 ÷ 2 9 4b. 9 1 8 9 6 ÷ ÷ 25 5a. 3 ÷ 4 6a. 4 ÷ 9 7a. 8a. 9a. 10a. 11a. 12 ÷ 1 5 5 6 3 12 2 5 7 9 = ÷ 14 5b. 4 = ÷ 5 6b. 5 = ÷ 12 7b. = 5 ÷ 3 4 = 3 2 4 ÷ 3 12 = 1 1 2 ÷ 3 3 4 2 3 4 ÷ 1 7 8 9 ÷ 8b. 3 ÷ 2 = 6 = 3 5 10b. = 11b. 33 = 11 4c. 4 = ÷ 11 5c. 5 = ÷ 9 6c. 2 = ÷ 5 1 3 = 3c. 5 ÷ 25 3 9 3 9 1 9b. = 2c. 4 ÷ 2 = 7c. = 5 ÷ 1 11 = 3 10 = 4 15 = 15 16 = 8c. 2 ÷ 5 = 6 4 6 7 ÷ 5 12 = 5 1 4 ÷ 4 2 3 6 1 2 ÷ 3 1 4 = = = 13 Answers Division Fractions 1a. 2a. 2 3a. 4a. 1 5a. 6a. 1 7a. 30 8a. 9a. 6 5 9 10 7 9 2 3 14 10a. 11a. 5 8 2 3 11 24 1 1 2 5 7 15 1b. 2b. 1 3b. 4 7 10 1 14 1c. 2 2 3 3 5 2c. 3c. 2 4b. 1 5b. 4 6b. 1 7b. 8b. 7 4 5 1 4 4c. 4 5c. 1 6c. 1 27 7c. 5 5 8c. 2 9b. 11 10b. 1 11b. 2 23 27 1 2 1 3 2 5 23 35 1 8 14 Fractions – Adding Common Denominator Adding/Subtracting with Common (same) Denominators1. bring denominator down 2. perform the operation(add/subtract) for numerators 3. reduce 4 2 + 1a. 7 = + 1b. 11 11 10 1 10 6 + 2a. = 12 8 6 1 4 + 12 = 10 2 = 8 6 + 3b. 12 = + 2b. 12 3a. 3 11 = 11 Fractions - Adding Common Denominators 1a. 1b. 6/11 1 2a. 2b. 11/12 1 3a. 3b. 7/12 10/11 Fractions – Subtraction Common Denominator 10 9 − 1a. 12 = 2 − 9 = 9 1 − 1b. 12 3 2a. 9 = 10 10 5 2 − 2b. 12 = 12 Fractions - Subtraction Common Denominator 1a. 1b. 1/12 4/5 2a. 2b. 1/9 1/4 15 Fractions – Adding/Subtracting Unlike Denominator & Mixed Numbers Adding/Subtracting with Unlike Denominators1. find common denominator a. find a multiple of both denominators b. look at your largest denominator, will your smallest denominator go evenly into your larger denominator c. if all else fails multiply your denominators by each other 2. multiply your numerator by the same number as you multiplied the denominator by in that fraction 3. follow adding/subtracting with common denominator rules Adding/Subtracting with Mixed Numbers1. follow adding/subtracting fraction rules 2. simply perform the operation on your whole numbers Borrowing and Subtracting Fractions 1. When you do not have a fraction to subtract from you have to borrow from your whole number. 2. When borrowing if no fraction is available take the denominator of the mixed number and put it over itself. 3. If a fraction is available but you still must borrow, then borrow from your whole number and change your numerator by adding your denominator to your numerator for your new numerator and your denominator stays the same. 16 1 8 = 3 + 48 = 4 9 = 1a. 4 9 2a. 5 9 + 3a. 1 3 + 2 4a. 1 6 + 5 5a. 3 4 8 + 6 6a. 4 3 9 + 12 7a. 12 8a. 5 9a. 10a. 11a. 2 + 5 3 + 7 8 + 9 11 10 + 3 8 1b. 4 6 2b. 3 4 3b. 8 10 + 5 + 12 7b. = 9 8b. 3 = + 4 3 2 4 + 3 12 = 1 1 2 + 3 3 4 2 3 4 + 1 7 8 12 6 + 9 = 8 3c. 1 = 6 + 3 = 4 = 9 5 7c. = 5 10b. = 11b. 5 8c. 2 = 4 6 7 5 + 12 = 5 1 4 4 2 3 6 1 2 3 1 4 + + = 2 3 = 4 + 12 = 3 + 10 = 4 6c. 2 = 3 5 6 + 10 = 5c. 5 3 + + 4c. 3 1 9b. = 2c. 3 3 6b. 5 = 10 + 1 5b. 4 = = 8 4b. 8 = 1c. 7 + 15 = 15 + 16 = 5 + 6 = = = 17 1a. 41 1b. 72 2a. 89 1 2b. 144 3a. 7 3b. 5 4b. 12 5a. 7 1 6a. 5b. 3 3 4 7a. 2 12 8a. 5 9a. 10a. 5 11a. 8 30 4c. 1 1 5c. 9b. 5 12 77 90 6c. 2 3 7c. 3 3 3 15 5 8c. 16 5 2 6 23 5 10b. 4 5 4 8b. 4 1 1 9 4 3 3 7b. 24 23 4 5 3 3c. 30 6b. 10 1 1 15 29 12 2c. 40 7 1 3 1 44 7 1 1c. 24 25 1 9 4a. 13 84 11 9 11b. 12 3 9 4 18 1a. 8 9 2a. 2 3 3a. 2 5 4a. 7 - 3 8 = 6 - 7 11 = 2b. 3 - 1 6 3b. 8 - 8 5a. 5 - 6 6a. 5 - 6 7a. 7 - 8a. 12 - 9a. 10a. 11a. = = 10 - 1 7 = 24 1 5 - = 9 - 9 2 7b. = 4 7 8b. 8 11 = 6 6 11 - 2 3 = 7 1 3 - 4 11 12 10 2 5 - 5 7 10 6 1 6b. 4 = 12 1 5b. 5 3 7 - 7 12 4b. 11 10 = 5 = 5 5 3 - 2 9 1b. 5 - 6 3 - 9 5 - 6 9b. 10b. = 11b. = 1c. 1 2 - 1 8 = 2 10 - 11 = 2c. 9 3c. 4 5 - 4 - 16 = 1 5c. 4 = 5 - 4 7c. = 1 8c. 4 = 17 7 11 - 6 8 = 5 2 3 2 3 4 12 4 5 5 2 9 - - 3 = 2 6c. 3 = = 3 4c. 3 = 4 8 - 7 = 2 - 4 = 3 - 7 = = = 19 1a. 37 1b. 11 72 2a. 1 7 2b. 1 3 3b. 23 1 4b. 1 7 5b. 7 5 6 8a. 6b. 11 9a. 5 5 10a. 11a. 4 8b. 10 3 10 4c. 9 16 5c. 7 15 6c. 13 9b. 28 7c. 1 3 1 7 6 2 8c. 4 3 7 39 16 10b. 12 7 2 6 33 5 2 7b. 11 29 3c. 18 7 7 110 18 30 7a. 79 24 2 6a. 2c. 35 8 5a. 8 60 30 4a. 3 18 33 3a. 1c. 144 11 2 11b. 12 26 7 45 20 Fractions Extra Practice 1a. 2a. 3a. 4a. 5a. 6a. 7a. 8a. 9a. 10a. 11a. 12a. 13a. 14a. 15a. 16a. 17a. 18a. 7/9 + 1/9 = 12/13 - 10/13 = 30/12 - 14/12 = 32/18 - 7/18 = 25/30 + 2/30 = 6/7 + 11/14 = 7/8 - 3/10 = 28/32 - 7/8 = 7/10 + 5/12 = 5/12 - 3/15 = 13/36 + 5/12= 3 5/8 + 5 4/8= 2 5/7 + 3 2/7= 3 8/11 - 2 10/11= 1/2 X 5/6 = 8/12 X 4/6 = 5/6 x 2 = 2 3/4 X 4/5= Answers Fractions 1a. 8/9 2a. 2/13 3a. 1 1/3 4a. 1 7/18 5a. 9/10 6a. 1 9/14 7a. 23/40 8a. 0 9a. 1 7/60 Extra 1b. 2b. 3b. 4b. 5b. 6b. 7b. 8b. 9b. 1b. 2b. 3b. 4b. 5b. 6b. 7b. 8b. 9b. 10b. 11b. 12b. 13b. 14b. 15b. 16b. 17b. 18b. Practice 1/12 21 1/3 15 19 1/2 3/5 2 1/8 1 1/2 1/3 4 1/2 6/28 X 14/36 = 4 X 5 1/3= 4 4/5 X 3 1/8= 6 1/2 X 3 1/3 ÷ 5/9 = 17/9 ÷ 8/9 = 3/12 ÷ 6/36 = 6/54 ÷ 3/9 = 3 ÷ 2/3 = 3 1/2 ÷ 4 6/8 = 7 1/3 ÷ 4/12 = 3 1/2 ÷ 9/18 = 5 1/2 ÷ 1 2/3 = 1 7/9 ÷ 4 2/9 = 1/2 ÷ 1/3 = 12 ÷ 3/15 = 5 ÷ 4 2/9 = 2 1/4 ÷ 2 1/4 = 10a. 11a. 12a. 13a. 14a. 15a. 16a. 17a. 18a. 13/60 7/9 9 1/8 6 9/11 5/12 4/9 1 2/3 2 1/5 10b. 11b. 12b. 13b. 14b. 15b. 16b. 17b. 18b. 14/19 22 7 3 3/10 8/19 1 1/2 60 1 7/38 1 21 Percents To change a percent to a decimal, move the decimal to the left 2 places. If no decimal is visible it is understood that it is to the right of the digits. Percent to Decimals 1a. 91.50% 1b. 91.10% 1c. 21% 2a. 58.70% 2b. 15.70% 2c. 16% 3a. 5% 3b. 7% 3c. 12.30% 4a. 1.25% 4b. 23% 4c. 12.50% 5a. 1.37% 5b. 23.25% 5c. 2% Answers Percents to Decimals 1a. 0.915 1b. 0.911 1c. 0.21 2a. 0.587 2b. 0.157 2c. 0.16 3a. 0.05 3b. 0.07 3c. 0.1230 4a. 0.0125 4b. 0.23 5a. 0.0137 5b. 0.2325 4c. 5c. 0.1250 0.02 To change a decimal to a percent, move the decimal to the right 2 places. Decimals to Percents 1a. 0.206 1b. 0.163 1c. 0.125 2a. 0.7 2b. 0.141 2c. 23.5 3a. 0.547 3b. 0.05 3c. 15.75 4a. 0.3 4b. 0.22 4c. 1.25 5a. 0.24 5b. 0.3 5c. 502.5 22 Answers Percents to Decimals 1a. 20.6% 1b. 16.3% 1c. 12.5% 2a. 70% 2b. 14.1% 2c. 2350% 3a. 54.7% 3b. 5% 3c. 1575% 4a. 30% 4b. 22% 4c. 125% 5a. 24% 5b. 30% 5c. 50250% Percentage problems are set up in this format: _____ % of _____ is _____ 1st X 2nd = 3rd If you have the 1st & 2nd numbers, then you multiply to find the 3rd number. Calculate the percentages. 1a. 2a. 3a. 4a. 5a. 15% of 50 = What is 25% of 80 ? 1b. 2b. What is 20% of 80? 3b. 4b. 37 1/2% of 64 = 5b. 40% of 60 = What is 30% of 90? 20% of 360 = 1c. 2c. 50% of 50= 3c. 4c. 30 1/4% of 400 = 5c. What is 75% of 120? 6 2/3% of 45 = 8 1/3% of 36 = What is 1 1/2% of 200? What is 12 1/2% of 40? What is 75% of 24? If you have the 2nd & 3rd or 1st & 3rd numbers, then you divide to find the 1st or 2nd number . (3rd number always goes in your box. 1a. 25% of what number is 8? 1b. 50% of what number is 45? 2a. 60 is 40% of what number? 2b. 10% of what number is 6.3? 3a. 7 1/2% of what number is 3.75? 3b. 27 is 67.5% of what number? 4a. 37 1/2% of what number is 24? 4b. 30% of what number is 183? 5a. 80% of what number is 20? 5b. 2 1/2% of what number is 25? 6a. 230 is 50% of what number ? 6b. 75% of what number is 90? 23 Solve the percent problems. 15 is what percent of 60? 1b. 45 is what percent of 50? 2a. What percent of 20 is 16? 2b. 9 is what percent of 90? 3a. 7 is what percent of 20? 3b. 14 is what percent of 200? 4a. What percent of 85 is 17? 4b. What percent of 0.92 is 0.23? 5a. 15 is what percent of 75? 5b. 40 is what percent of 320? 6a. What percent of 90 is 27? 6b. 90 is what percent of 120? 1a. Answers Calculate the Percentages 1a. 7.5 1b. 27 1c. 3 2a. 20 2b. 72 2c. 3 3a. 24 3b. 90 3c. 3 4a. 16 4b. 25 5a. 24 5b. 121 1a. 32 1b. 90 4c. 5c. 5 18 Answers Solve the Percent Problems 2a. 150 2b. 63 1a. 2a. 25% 80% 1b. 2b. 90% 10% 3a. 50 3b. 40 3a. 35% 3b. 7% 4a. 64 4b. 610 4a. 20% 4b. 25% 5a. 25 5b. 1000 6a. 460 6b. 120 5a. 6a. 20% 30% 5b. 6b. 13% 75% 24 Percent Extra Practice 1a. 75% of 8 = ___ 2a. 30% of 80 = __ 3a. 35% of 18 = __ 4a. 25% of 96 = __ 5a. 12 ½% of 84= ___ 6a. 15% of what number is 3? 7a. 50% of what number is 19? 8a. 10% of what number is 10? 9a. 20% of what number is 16? 10a. 40% of what number is 2? 11a. What percent of 36 is 9? 12a. What percent of 22 is 25? 13a. 60 is what percent of 50? 14a. 50 is what percent of 25? 15a. 20 is what percent of 30? Answers Percent Extra Practice 1a. 6 6a. 2a. 24 7a. 3a. 6.3 8a. 4a. 24 9a. 5a. 10.5 10a. 20 38 100 80 5 11a. 12a. 13a. 14a. 15a. 25% 114% 120% 200% 66% 25 Signed Numbers/Integers Positive Numbers – greater than zero (doesn’t have a sign) Negative Numbers – are less than zero (always written with a negative sign - ) Zero has no sign and is always written as 0 Adding Integers Same sign – add the number s & give that sign o (+) + (+) = (+) o (-) + (-) = (-) 1a. 5 + 6 = ____ 1b. 9 + 9 = ____ 2a. -3 + -4 = ____ 2b. -3 + -5 = ____ 3a. -12 + -9 = ____ 3b. 22 + 4 = ____ 4a. 8 + 3 = ____ 4b. -5 + -4 = ____ 5a. -5 + -2 = ____ 5b. -1 + -8 = ____ 6a. -15 + -6 = ____ 6b. -25 + -10 = _____ 7a. 12 + 7= ____ 7b. 5 + 12 = ____ 8a. -6 + -1 = ____ 8b. -4 + -2 = ____ 9a. -13 + -12 = ____ 9b. -10 + -15 = ____ 10a. 9 + 7 = ____ 10b. 6 + 5= ____ opposite signs - subtract the two numbers, give the sign of the greater number o (+ larger number) + (- smaller number) = (+) ex. 5 + -2 = 3 o (+ smaller number) + (-larger number) = (-) ex. 2 + -5 = -3 1a. 5 + -6 = ____ 1b. -9 + 7= ____ 2a. -3 + 3= ____ 2b. -3 + 5= ____ 3a. 12 + -9 = ____ 3b. -22 + 4= ____ 4a. 8 + -3 = ____ 4b. 5 + -4= ____ 5a. -5 + 6= ____ 5b. -1 + 8= ____ 6a. 15 + -6 = ____ 6b. 25 + -10 = _____ 7a. -12 + 7 = ____ 7b. 5 + -12= ____ 8a. -6 + 1= ____ 8b. 4 + -2= ____ 9a. 13 + -12 = ____ 9b. 10 + -15= ____ 10a. 9 + -7 = ____ 10b. 6 + -5= ____ 26 Answers Adding Integers Same Signs 1a. 11 1b. 18 2a. -7 2b. -8 3a. -21 3b. 26 4a. 11 4b. -9 5a. -7 5b. -9 6a. -21 6b. -35 7a. 19 7b. 17 8a. -7 8b. -6 9a. -25 9b. -25 10a. 16 10b. 11 Adding Integers Different Signs 1a. -1 1b. -2 2a. 0 2b. 2 3a. 3 3b. -18 4a. 5 4b. 1 5a. 1 5b. 7 6a. 9 6b. 15 7a. -5 7b. -7 8a. -5 8b. 2 9a. 1 9b. -5 10a. 2 10b. 1 Subtracting Integers Change the sign of the second number, change the subtraction sign to addition then follow your addition rules 1a. 5 - (-6) = ____ 1b. -9 - 7= ____ 2a. -3 - 5= ____ 2b. -3 - 9= ____ 3a. 12 – (-9) = ____ 3b. -22 - 4= ____ 4a. 8 – (-3) = ____ 4b. 5 - 4= ____ 5a. -5 - 6= ____ 5b. -1 - 8= ____ 6a. 15 - (-6) = ____ 6b. 25 – (-10) = _____ 7a. -12 - 7= ____ 7b. 5 - 12= ____ 8a. -6 - 1= ____ 8b. 4 - 2= ____ 9a. 13 – (-12) = ____ 9b. 10 – (-15)= ____ 10a. 9 – (-7) = ____ 10b. 6 – (-5)= ____ 27 Answers Subtracting Integers 1a. 11 2a. -8 3a. 21 4a. 11 5a. -11 6a. 21 7a. -19 8a. -7 9a. 25 10a. 16 1b. 2b. 3b. 4b. 5b. 6b. 7b. 8b. 9b. 10b. -16 -12 -26 1 -9 35 -7 2 25 11 Multiplying Integers Same signs = positive Opposite signs = negative Same sign – multiply numbers and make a positive o (+) X (+) = (+) o (-) X (-) = (+) 1a. 4 X 2 = ___ 1b. -5 X -12= ____ 2a. 3 X 3 = ___ 2b. -4 X -5= ____ 3a. 5 X 8 = ___ 3b. -9 X -6= ____ 4a. 6 X 4 = ___ 4b. -10 X -4= ___ 5a. 7 X 9 = ___ 5b. -8 X -2 = ___ Opposite sign – multiply numbers and make a negative o (+) X (-) = (-) o (-) X (+) = (-) 1a. -5 X 12 = ____ 6a. 7 X -9 = ___ 2a. -4 X 5= ____ 7a. -6 X 4= ___ 3a. 9 X -6= ____ 8a. 5 X -8 = ___ 4a. 10 X -4= ___ 9a. 3 X -3 = ____ 5a. -8 X 2= ___ 10a. -4 X 2= ____ Multiplying more than two signed numbers o If there are an even number of negative signs, give the product a positive sign. o If there are an odd number of negative signs, give the product a negative sign. 28 Multiplying Integers Same Signs 1a. 2a. 3a. 4a. 5a. 8 9 40 24 63 1b. 2b. 3b. 4b. 5b. 60 20 54 40 16 Multiplying Integers Different Signs 1a. 2a. 3a. 4a. 5a. -60 -20 -54 -40 -16 6a. 7a. 8a. 9a. 10a. -63 -24 -40 -9 -8 Dividing Integers Same signs = positive Opposite signs = negative Have the same sign, divide the numbers and give the quotient a positive sign. 1a. 20 ÷ 4= ____ 6a. -27 ÷ -9 = ___ 2a. 25 ÷ 5= ____ 7a. -24 ÷ -4= ___ 3a. 9 ÷ 3= ____ 8a. -40 ÷ -8 = ___ 4a. 16 ÷ 4= ___ 9a. -3 ÷ -3 = ____ 5a. 8 ÷ 2= ___ 10a. -4 ÷ -2= ____ Have opposite signs, divide the numbers and give the quotient a negative sign. 1a. -20 ÷ 4= ____ 6a. 27 ÷ -9 = ___ 2a. 25 ÷ -5= ____ 7a. -24 ÷ 4= ___ 3a. 9 ÷ -3= ____ 8a. 40 ÷ -8 = ___ 4a. 16 ÷ -4= ___ 9a. 3 ÷ -3 = ____ 5a. -8 ÷ 2= ___ 10a. -4 ÷ 2= ____ 29 Dividing Integers Same Signs 1a. 2a. 3a. 4a. 5a. 6a. 7a. 8a. 9a. 10a. 5 5 3 4 4 3 6 5 1 2 Dividing Integers Different Signs 1a. 2a. 3a. 4a. 5a. 6a. 7a. 8a. 9a. 10a. -5 -5 -3 -4 -4 -3 -6 -5 -1 -2 Integers Extra Practice 1a. -9 X -13 = 1b. -4 + -5 = 2a. -36 X -3 = 2b. -10 + 2 = 3a. 11 X -4 = 3b. -17 + -19 = 4a. -5 X 12 = 4b. 35 + -19 = 5a. 8 X -37 = 5b. -3 + 5 = 6a. -65 X -8 = 6b. -7 + 3 = 7a. 48 ÷ -3 = 7b. -23 + 6 = 8a. 68 ÷ -17 = 8b. -25 + -32 = 9a. -51 ÷ -17 = 9b. -10 + -5 = 10a. -91 ÷ 13 = 10b. -15 + -7 = 11a. 64 ÷ -16 = 11b. 12 + 9 = 12a. -804 ÷ 67 = 12b. 7 - -5 = 13a. -64 ÷ 8 = 13b. -3 - -13= 14a. -5 + 6 = 14b. -9 - -6 = 15a. -9 + -7 = 15b. 5 + -32 = 16a. 19 - -7 = 16b. -25 + -3 = 17a. -18 - -13 = 17b. -2 + 2 = 18a. -18 - 37 = 18b. -21 + 3 = 30 Integers Extra Practice Answers 1a. 117 1b. 2a. 108 2b. 3a. -44 3b. 4a. -60 4b. 5a. -296 5b. 6a. 520 6b. 7a. -16 7b. 8a. -4 8b. 9a. 3 9b. -9 -8 -36 16 2 -4 -17 -57 -15 10a. 11a. 12a. 13a. 14a. 15a. 16a. 17a. 18a. -7 -4 -12 -8 1 -16 26 -5 -55 10b. 11b. 12b. 13b. 14b. 15b. 16b. 17b. 18b. -22 21 12 10 -3 -27 -28 0 -18 31 Exponent/Power Exponent/Power – a number multiplied by itself one or more times. Four to the third power (first example) means 4 X 4 X 4 = 64 (4 X 4 = 16 X 4). A number raised to the second power is known as a square and a number raised to the third power is known as cubed. 1. 43 = ___ 2. 63 = ____ 3. 83 = ___ 4. 52 = ___ 5. 34 = ____ Any number to the power of one is that number. Any number to the power of zero equals 1. 1. 41 =_4_ 2. 50= _1_ 3. 61 = ___ 4. 20 = ___ 5. 90 = ___ 6. 31 = ___ Square Roots A number multiplied by itself equals that number. A positive number has two square roots- a positive and/or negative. If a number is on the outside of the “check mark”, find your square then multiply by that number. If performing an operation with square roots, find your squares then perform the operation. 1a. √100 1b. 3√4 1c. √1 2a. √25 2b. √16 2c. 2√49 Answer Exponent/Power 1 1 64 2 2 216 3 3 512 4 4 25 5 5 81 6 4 1 6 1 1 3 Answers Square Roots 1a. 1b. 10 2a. 2b. 5 6 4 1c. 2c. 1 14 32 Square Roots/Exponents/Powers Extra Practice √4 1a. 1b. 52 2b. 43 3b. 24 4b. 32 5b. 81 6b. 12 7b. 70 8b. 62 9b. 21 √9 2a. √81 3a. √49 4a. √36 5a. √16 6a. √64 7a. 2√25 8a. 9a. 10a. 3√100 4√36 10b. 80 Answers Square Roots/Exponents/Powers Extra Practice 1a. 2 1b. 2a. 3 2b. 3a. 9 3b. 4a. 7 4b. 5a. 6 5b. 6a. 4 6b. 7a. 8 7b. 8a. 10 8b. 9a. 30 9b. 10a. 24 10b. 25 64 16 9 8 1 1 36 2 1 33 Absolute Value Absolute Value is the POSITIVE value of a number regardless of its sign. The symbol for absolute value is l l (2 straight lines). 1. l -4 l 2. l 7 Absolute 1. 2. 3. l 3. l 0–9l 4. l -1- (-6) l 5. l -4 +6 l 6. l 0 l Value 4. 5. 6. 4 7 9 5 2 0 Scientific Notation Scientific notation is a shorter way of writing numbers with multiple zeros. In scientific notation a number is written as the product of two factors. The first is a number between 1 and 10. The second factor is a power of 10. A positive exponent means you move the decimal to the right a negative exponent means you move the decimal to the left. 7.5 X 103= 7,500 4 X 10-2= 0.04 1a. 6.3 X 102 = ____________ 1b. 9 X 106=__________________ 2a. 8.5 X 10-5= _____________ 2b. 7 X 10-6=__________________ 3a. 5,0000 = _______________ 3b. 30, 000 = __________________ 4a. 0.03 = _________________ 4b. 0.0075 = __________________ Answers Scientific Notation 1a. 630 2a. 0.000085 3a. 4a. 5 X 104 3 X 10-2 1b. 2b. 3b. 4b. 9,000,000 0.000007 3 X 104 7.5 X 10-3 34 ORDER OF OPERATIONS Please Excuse My Dear Aunt SallyParenthesis, Exponents, Multiplication, Division, Addition, Subtraction (Left to Right) 1. 6 ÷ 2 + 5 X 4= 2. (3 + 62) + 9 = 3. 9 − (9 − 7 × 52 × 9) = 4. (2 − 5 − 4 − 7) = 5. (6 + 8) + (63 ÷ 3) + 4 = 6. (25 X 3) + (15 -3) = 7. (6 + 9) − 7 = 8. 3(34-19) = 9. (82 × 33) − 1 = 10. (4 − 5 − 2 ÷ 2) = 11. 15 ÷ 5 X 3 12. 6 X 3 ÷ 9 – 1 = 13. (3 + 9) + 4 = 14. 96 ÷ 12 (4) ÷ 2 15. 52 × (8 − 92 + 3) = 16. (7 × 9 − 8 − 4) × 4 = 17. (8 + 6 + 1) = 18. (62 × 9 + 9) − 2 = 19. (5 − 6) − 1 = 20. 7 − (93 − 43 + 8 − 6) = 21. 36 - 9 6-3 22. (7 − 12 − 5) = 23. (9 + 5) + 8 = 24. (23 ÷ 22) + 92 − 9 = 25. (3 − 53 − 9) = 26. (8 ÷ 8) + 3 + 4 = 28. 4[ 12 ( 22 - 19 ) -3 X 6 ] 29. 2[ 5 (4+6) – 3] = 27. 86 - 11 9+6 30. (7 − 1 × 2 − 83 − 6) = 35 Order of Operations 1. 2. 48 23 4. 5. 90 -14 7. 8. 45 8 10. -2 11. 9 13. 16 14. 16 16. 204 17. 15 19. -2 20. -660 22. 1 23. 22 25. -131 26. 8 28. 72 29. 94 3. 6. 9. 12. 15. 18. 21. 24. 27. 30. 1575 87 1727 1 -1750 331 9 74 5 -513 Order of Operations 1a. 6÷2+5X4= 2a. 12 ÷ 3 + 12 ÷ 4 = 3a. 6 X 3 ÷ 9 -1= 4a. 15 ÷ 5 X 3= 5a. 6a. 36 ÷ (4 X 3) = 24 ÷8 - 2 = 7a. 3(7+4)-18 ÷ 9 = 8a. (5+3)2 9a. 6(7-5) + 4 = 10a. 28 ÷ 4 + 28 ÷ 7 = 11a. 5[3 + 4(22)] = 12a. 32[(11+3) -4] = 36 Answers Order of Operations 1a. 23 8a. 2a. 7 9a. 3a. 1 10a. 4a. 9 11a. 5a. 3 12a. 6a. 1 7a. 31 64 16 11 95 90 Combining Like Terms Combine like terms- you can only combine those that are EXACTLY alike, letters & exponents. You are NOT solving the equation. 1. 5a + 5a + 4b 2. 4a + 3b + 2c 3. 17r – 3r – 2t 4. 4a2 + 5a2-2a2 Answers Combine Like Terms 1. 10a + 4b 2. 4a + 3b +2c 3. 14r - 2t 4. 5. 6. 5. 3c3+5c2+ c 6. 5a3+4b+ 4c2 7a2 3c3+5c2+c 5a3+4b+4c2 Combine Like Terms Extra Practice 1a. 2xy + 5xy -4xy 2a. 4r + 19 - 8 3a. 9 + 5x + 4x +6x 4a. 4k + 3 - 2k + 8 + 7k -16 5a. 6ab + 7c 6a. 1a + 2s + 3t + 4j Answers Combine Like Terms Extra Practice 1a. 3xy 2a. 4r +11 3a. 9 + 15X 4a. 9k -5 5a. 6ab + 7 6a. 1a + 2s + 3t + 4j 37 Algebra Variables (letters) represent the unknown. In algebra you try to solve for the unknown, often doing the opposite operation. A letter by itself has an understood 1 in front of it. 1. 5. 9. 13. 17. 10 + y = 20 1-x=6 5+y=1 8+y=9 5 + 4x= 25 Answers Algebra 1. 10 2. 5. -5 6. 9. -4 10. 13. 1 14. 17. 5 18. 2. 6. 10. 14. 18. 10 -4 48 6 3 -10 y = -100 3. -2 + x = -11 7. -4 - y = 0 y + 9 = 57 8 y + 9 = 57 8 y + 9 = 33 3. 7. 11. 15. 19. -10 + y = 20 11. 15. 19. -9 30 6 9 3 3+x=9 4x = 36 3 + 7x= 24 4. 8. 12. 16. 20.. 4. 8. 12. 16. 20. 9 y = 99 -7 + y = -17 x + 9 = 29 9x = 63 x + 9x = 30 11 -10 20 7 3 38 Algebra Extra Practice 1 1a. 1b. x+3=9 4s = 20 1c. 5y = 32.5 2a. y - 12 = 37 2b. n + 10 = 24 2c. 7y = 16.8 3a. 3z = 39 3b. x-3=7 3c. x/5 = 4 4a. a/15 = 3 4b. 8n = 48 4c. y/3 = 6 5a. n + (-4) = 15 5b. 6y = 54 5c. y/3 = 9 6a. n/3 = 12 6b. y + 2.75 = 7.5 6c. x - 7 = 12 7a. x + 6 = 15 7b. n + 9 = 14 7c. x + 23 = 47 8a. 9a = 72 8b. 4x = -32 8c. x + (-5) = 8 9a. a+5=2 9b. x -12 =13 9c. b - 3 = -7 10a. 6p = 42 10b. 4n = -28 10c. 5q = 120 Answers Algebra Extra Practice 1 1a. 6 1b. 5 1c. 6.5 2a. 49 2b. 14 2c. 2.4 3a. 13 3b. 10 3c. 20 4a. 45 4b. 6 18 5a. 19 5b. 9 4c. 5c. 6a. 36 6b. 4.75 6c. 19 7a. 9 7b. 5 7c. 24 8a. 8 8b. -8 8c. 13 9a. -3 9b. 25 -4 10a. 7 10b. -7 9c. 10c 27 24 39 Algebra Extra Practice 2 1a. 2a. 3a. 4a. 5a. 6a. 7a. 8a. 9a. 4 + b = - 13 x + 13 = 9 18 + m = - 57 b + 63 = 44 g + -19 = 24 -12 + k = -37 x + (-21) = -59 m + 37 = 14 a - 16 = 33 10a. y - 8 = -22 11a. y + -7 =19 12a. b + -14 = 6 13a. z - -7 = -19 14a. t - -34 = 66 15a. 4y = -52 16a. -9m = 99 17a. -3y = 42 18a. -13a=52 1b. 2b. 3b. 4b. 5b. 6b. 7b. 8b. 9b. 10b . 11b . 12b . 13b . 14b . 15b . 16b . 17b . 18b . Answers Algebra Extra Practice 2 1a. -17 1b. -49 2a. -4 2b. 13 3a. -75 3b. -93 z + 16 = -33 b + 4 = 17 w + 42 = -51 z + 13 = -22 -17 + z = 5 p + (-8) = -21 q + (-3) = 17 x + (-100) = 283 t - -16 = 9 x - 25 = -18 c - -9 = 74 k - 12 = -14 m - -21 = 0 y - -47 = 42 -15h = -60 -3t = 51 -6a = 84 21s = 315 10a. 11a. 12a. -14 26 20 10b. 11b. 12b. 7 65 -2 40 4a. 5a. 6a. 7a. 8a. 9a. -19 43 -25 -38 -23 49 4b. 5b. 6b. 7b. 8b. 9b. -35 22 -13 20 383 -7 13a. 14a. 15a. 16a. 17a. 18a. -26 32 -13 -11 -14 -4 13b. 14b. 15b. 16b. 17b. 18b. -21 -5 4 -17 -14 15 Distributing Multiply the number outside the parenthesis by the items inside the parenthesis. Combine like terms first. If an exponent is involved you must add the exponents while multiplying the whole numbers. If one is not visible it is an understood 1. 1. 4n(3n2 + 2) = 2. 5c(c + 7) = 3. 6a2(2a3 – 5)= 4. 5x + y(4y2-3y)= 5. 7x(3 + 4y)= 6. 2a(a+3)= 7. 18z(3 -2)= 8. 3a +2b(4-3)= 9. -4(3a + 2b) -2ab= 10. 3x – 2y(4x+3y)= 11. -4(2c +3d) -3d = 12. -1(5x + 5y) –y = Answers Distributing 1. 2. 3. 4. 12n3+8n 5c2+ 35c 12a5-30a2 5x+4y3-3y2 5. 6. 7. 8. 21x + 28xy 9. 2a2+6a 18z 3a+2b 10. 11. 12. -12a -8b-2ab 3x-8xy-6y2 -8c-15d -5x-6y Distributing 1a. 5(x + 4) = 2a. 4(2a + 6b) = 3a. 2m(3m +2)= 4a. 3p(8 - 6p) = 5a. 8z(2z + 3z2 +3z3) 6a. 5x-y(3x - y) 7a. 6xy(3x2-4y2) Answers Distributing 41 1a. 2a. 3a. 4a. 5x + 20 8a + 24b 6m2+4m 24p - 18p2 5a. 16z2 + 24z3 + 24z4 6a. 5x - 3xy +y2 7a. 18x3y - 24xy3 42