Download Ch 26

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Eddy current wikipedia , lookup

Insulator (electricity) wikipedia , lookup

Hall effect wikipedia , lookup

Multiferroics wikipedia , lookup

History of electromagnetic theory wikipedia , lookup

Electromagnetism wikipedia , lookup

Faraday paradox wikipedia , lookup

Electric machine wikipedia , lookup

History of electrochemistry wikipedia , lookup

Static electricity wikipedia , lookup

Maxwell's equations wikipedia , lookup

Electroactive polymers wikipedia , lookup

Electrocommunication wikipedia , lookup

Electrical injury wikipedia , lookup

Lorentz force wikipedia , lookup

Electromotive force wikipedia , lookup

Dielectric wikipedia , lookup

General Electric wikipedia , lookup

Electric current wikipedia , lookup

Electric charge wikipedia , lookup

Electromagnetic field wikipedia , lookup

Electricity wikipedia , lookup

Electrostatics wikipedia , lookup

Transcript
The Electric Field
26.1 Electric Field Models
26,2 The Electric Field of Muttiple Point Charges
1. You've been assigned the task of determining the magnitude and direction of the electric field at a
point in space. Give a step-by-step procedure of how you will do so. List any objects you will use, any
measurements you will make, and any calculations you will need to perform. Make sure that your
measurements do not disfurb the charges that are creating the field'
a {i^,1, posi{ivo +"r+ .lno"1o ct the poi^* in spo,cL o,tJ
fv\cos,.e,rg *f.,o fo.r.g on i{, f.or-, }ho fo..c v.'1qots\^rov\c,^+-o'nJ
thc el." , ;;f,J"in- tho- ul".{,i. hil usinl I = t/t.
Thn dir"Jio^ 6$ *ho {rt\l is {\rc- s.,,^c qs lho Jir".{io"'
sf U" {o.* bo**. t, is posi{ivc
Ploco
.
an electric field at the position ofthe dot? If so, draw the
electric field vector on the figure. If not, what would you need to
do to create an electric field at this point?
2. Is there
tt
./
?--'
tlcs llrevc is q.\^
.\o.l"i. S,d)
ct
+aE
$l^is pos\\i onn.
-
J.
This is the electric field in a region of space.
a. Explain the information that is portrayed in this diagram.
+E
-E
Thc-re- is Sowrc- Sov.rco, o{ pori}iuc .hnt5e
o\.1. th" \"f* si de, Jho \o'rt1or voctors
i^Ji.^*e- o.
lo.rqcc i-\..*ti. f;.Jd
"o\o.tiu"\u
o^ *f,e. lof+, .\ovt1' +" fu
b.
\-\-*;
cho,rge.
If field vectors were drawn at the same six points but each was only half as long, would the picture
represent the same electric field or a different electric fieid? Explain.
I+ coolJ rcpfcss\^+
l"^qt\n o{ {\o f;"\J
^-{^i{"Jc of {l.o
ti"" sq'\e- tlc.*ric
..ro"{on
o,n\V
f;"tl
re,pfcsc\^+S
{r"tJ "{
"le.tric
+h
*
hco.qsa t{no
ro[o*(ur-
26-1
26-2
4.
cHAprER
26
.
The Electric Field
Each figure shows two vectors. Can a point charge create an electric field that looks like this at these
two points? If so, add the charge to the figure. If not, why not?
Note: The dots are the points to which the vectors are attached. There are no charges at these points.
a.q
b.
,i r\
l\
\r''.'.
I
I
\l
I
"6
I
Yer %i,".+ X
fath"-r q.\^roY
{ro*
it
Y"r.
Ag'.rrr,
-,s
Yos.
\u ftelJ
3
J{:-i.tl^:fi
F".+c.4tr'^'Y' oi the- J6t.'
Poin+
chcr3e.
No' Thc
fi"td
d'ls
l*p";;*,:\T}"
dire.lf o"i.
5. At
each of the dots, use a black pen or pencil to draw and label the electric fields Z1 and E2 due to the
two point charges. Make sure that the relative lengths of your vectors indicate the strength of each
electric field. Then use a red pen or pencil to draw and label the net electric field ,8n., at each dot.
A
a.
E"*t
b.
,i
a
d,+8,
*e-'+
Er. tr
A)
ql
E",ot=
0
E^
i,^"t *-4,
(,
4t
9--r
IA
Er
f,
E^
E,*r
f ..--Fr.
{+)
q.
(+ Er
E".s+
Er
6. For each of the figures, use dots to mark any point or points
E,,.+
(other than infinity) where E = 0.
o
a.
I
roerrrr
a
E
t
F]
o
d
o
b.
l
la
t
The Electric Field
7. Compare the electric
.
cI{AprER
26 26-3
field strengths Q and E2atthe two points labeled 1 andZ. For each, is E1> E2, is
E1= E2, or is Et < Ez?
a.
c.
oioi
rO.
l-2
E >E.
E-,'E*
d'
;@ot
E
'--t
-- *.-.'
- f"
f.
z.
@i@
E.
t Ea
! €^
- -*
@rOi
?@t
o
'.
8. For each figure, draw and label the net electric field vector En", at each of the points marked with a dot
gr, if appropriate, label the dot ,8 r., = d. The lengths of your vectors should indicate the magnitude of
E ateachpoint.
-q
b.^
a.
En.t
iirJ
,iE";oi
E"ik (-i
''q
g
-rtc(
---
iq.
.--* E,*,
----ll
o
IJ
E".ot
I
o
i
Then, in the blanks, state whether the.r- andy-components of Eoo are positive or negative.
o
6
o
€
r!
E
o
{r-f
d
o
A
o
a.l
o
l."rr
.
r.
(En"r)* posilive
(Eo",)* postttvc
(En")y gosili-vg
(Eo")y
ngltvc
I
I
I
I
I
------rA\t/
9. Atthepositionofthedot,drawfieldvectors ElandE2duetoqlandq2,andthenetelectricfieldEr",.
E
V
i^.*
26-4
caeprux26
.
The Electric Field
10. Draw the net electric field vector at the three points marked with a dot.
Hint: Think of the charges
as horizontal positive/negative pairs,
then use superposition.
c-hcrl a
o'
Ar.v vcrfi.^l t'^ '(o^ev* {ron'' O
iuIto.^"rtte* b,1 tl^o Q &rrX<- o11o*rtc-
o
@
o
e
(,
@
rJ t
-li-?
\.
e
(l,
e
e
o
e
I 1. The figure shows the electric field lines in a region of
space. Draw the electric field vectors at the three dots.
The length of the vector should indicate the rel4tive
strenglh of the electric field at that point.
Th"* li"[J. is qn<'fc'- Jhera
F;"tJ,
ti,ne-v o.lo- .L
ot"
{-o
tt"g--
1e-4t.e-r'
12. The figure shows the electric field lines in a region of space. Rank in order, from largest to smallest,
the electrig field strengths E1 to Ea at points I to 4.
order:
Es = Er t E"
> E,
Explanation:
'T1n
o-\cdri
c f,uU strc-nqtL is
lorSo-c irn |V,c ,.ncqi on *Lore. thrtoqth"r
fl,"1i \i',.,es ara(E. on.d E.1) a",d svnq\ler -'^rh"ro
di.o"
*h" $i.lJ
agort,
li'^cs orc f.rthcr
o
d
sl
o
o
A.
O
N
o
The Electric Field
.
cHAprER
26 26'5
26.3 The Electric Field of a Continuous Charge Distribution
13. A small segment of wire contains 10 nC of charge.
a. The segment is shrunk to one-third of its original length. What is the ratio .Lrl7i,
where .Li and 21 are the initial and final linear charge densities?
It=
(9-/rr)
)i
[0./r,)
B.^1
Qi=Qs
?
LiA
l;
*
=5
b, Suppose tlie original segment of wire is stretched to 10 times its original length. How much charge
must be added to the wire to keep the linear charge density unchanged?
lO
chqnlc uto"{l qivr- o. Connstot'*
l\nc o',nn'o-i*{ o{ thl*go *o qdd *o
lir^tcs {hc oriqinql avloqnl
of
lincqr' "h^"1o dLsi{y. So
+\^; o'i5no.\"is q lin'tcs thc oriliin^\ t1*5e.
14. The figure shows two charged rods bent into a semicircle.
For each, draw the electric field vector at the "center" of
the semicircle.
a.
FF
([]+kl
\rb
\=
/J/
15. A hollow soda straw is uniformly charged. What is the electric
field at the center (inside) of the straw? Explain.
Thc- a\c-c*ric fidd
th" cr-tc-r is zgro. Nq.
^t
c6\A *hi*k of *he, strqu as br-inq ,,,.0.1c us 6f
$:h::',?,
Inside strarv
+ + + + +/ + +
+ + + +.+ + +
+r++++++
\4--'-:-'--:-
t" du*
I
"f:$.tn'_titt_Ix*1,1i.
/J/
@
+
+
#
16. A thin rod of length is uniformly charged with total charge Q. What is the electric field s trength on
the axis of the rod at distance d from its center?
':i
a. Begin with a visual representation. Draw a
horizontal rod, then divide it into 10 or 12
boxes with a + in each box. Add an x-axis
with the rod centered at the origin. Label the
ends of the rod x = - L/2 and x = Ll2. Plut a
dot on the r-axis at some point to the right
of the rod; label it x = d.
l-';i
1
o
o
d
b. Pick one of your + boxes to the right of the origin; label it "segment i," label its position as x,, and
write LQ beside it to show the charge in segment i. At the dot, draw the electric field vector due to
segment l; label it Q.
26-G
cHAprER
26
.
The Electric Field
c. Does E,hureanr-component?
Ay-component?
JeS
hO
Az-component?
d. Imagine the electric field, E rdue to some other segmentT.
rc Ertne same length ut E,i hO Does E, point the same direction as E,Z
nO
1eS
e. The rod's electric field E is the sum of all the E,. eased on what you've said so far:
A z-component? t1O
A y-component?
Does E have an x-component?
You should have found that E has only one component, requiring only one summation.
hO
JLS
f. Using what you know about the electric field of a point charge, write an expression for the electric
field compon ent of E,-the component you identified in part e-in terms of LQ, x1, d, andvarious
constants.
rlAo
E,*
,jTT?" ll{1a
Now write an expression of this component of the rod's field E
as a sum over
all i of your answer to
part f.
l
E*
t{rT€
o
AO
G)r
>'t
a/,
h. The rod has charge Q
in length L. What is the linear charge density? 2 =
),
i. Segment I has width Ar. Based on
j
and
Ar, the segment has charge Ap =
\AX
Rewrite your answer to part g with this substitution for A,Q.
t*=
I
rr
,-1rG.
L
)Ax
(d-*r)'
k. Now you're readil tp convert the sum to an integral. What are the integration limits?
Lower
limit - '/A
Upper
limit '/a
L Write your expression for the electric field as a definite integral. That means (a) Change Lx to dx,
(b) drop the subscript from 4 because x is now a continuous variable, (c) show the integration limits,
and (d) take all multiplicative constants outside the integration.
eI
t-
l-x
L
t/a
fi€o
'lu
d*
ffi1e
We're going to stop here. You've done the physics by figuring out what to integrate. Now it's 'Just"
a calculus problem of carrying out the integration to get a final answer.
o
t
rr.l
o
I
o
N
o
The Electric Field
.
cHAprER
26 26'7
26.4 The Electric Fields of Rings, Disks, Planes, and Spheres
17. An irregularly-shaped area of charge has sutface charge density ryt.
Each dimension (x and y) of the area is reduced by a factor of 3. 163
-----.'-\\ +\
/r\
l+
+\
)+
+\
/+l
'
a. What is the ratio rplrTi,where 41is the final surface charge density?
A+,,k"ts=lffi,=
Ai
E=
3. I (,30
=
b. ,Compare the finai ferce,on a elec.ffon very far awa.v to tire initiai r'olce
10, 0O
o,r,r
(*
\r+t
t\-____-/
the same etrectron.
forca. r^ro,^ld h. *he so61o fo. o. e\sc+ron Vc-ry {oc o$qY
bo.o*o +\" i6o1'.^lcc Sf,^p. is Sosvr qS o goit't thotSt'
-Ilne.
18. A circular disk has surface charge density SnClcm2. What
radius of the disk is doubled?
willbe the surface charge density if the
r.," * =*r= ?*.
= {ot, = a*u
*,*
fl-- S;=*h""=
"1.a.=
19. Rank in order, from laigeFt to smallest, the surface charge densities ry to ryq of surfaces
cm
I
lcrr I
tttonc
I
to 4.
2cm
2cm
T--*---l
tlt
I
,.,,,[--i---]
I ,0".
I
I
I
Order:11,=nr>\.1>nl
I0"C - 5 nc
;e
Exnlanation:
't," h= ffi.*r= 'o S
,^'A
'Ls
E
o
lOr,C
1ffiT.c^)=
I-a
?t"
tffi"*1=
=
S^ t^).3?.5*o
d(a.'n*
20. A sphere of radius R has charge Q. What happens to the electric field strength at r = 2R if:
a. The quantity of charge is halved?
E
: S- - If 0 is h".lveJ , 4h* E ;s o.ls o h"luJ'
tr.l
g
o
-- }.Ont
ryIa=
F
tr' - tlt€ocl
O
N
o
b. The radius of the sphere is halved?
o'*tsid. a SpL,.cco is th. sqvrL qs *h** s$ o. ooi"tt dno.o"
Q lo"*te-d c.t l\^c- c-o*tq.r of \o sphece,. S" \f *ho rJi.^,s .f *h"'
Sohqre chc.,.qe5. lA* {i"\A ro,r,no.i".i {Lte Sqrqo- o*tsiAe. *\ne sghare
Tlnc. $ietA
*i
the Jrt\""^."
r: IRi.
)
26-8
cHAprER
26
.
The Electric Field
26.5 The Parallel-Plate Gapacitor
21. Rank in order, from largest to smallest, the electric field strengths El to
E5
at each ofthese points.
order:
5.
E,=Et= Ee= E.=E,
23
4
Explanation:
[.x,r wEs.,
rhc- ale-tric t,e-\A is co^r*.** etor v \^lrrvrqv.rhc,fc bot,'rcar
{he pl^tcs. \i s is ihdicdcd bY {Fk o\*{"i. f;"\d
vo.ct or
5
o.ro
,^,[^i
l+l
otl thq- sarvnQ, \e^1+\ o,..J i,,,,
IN
rl
-+-
*he, saw\a. "L,
d ir,-"\io,..,.
22. Aparallel-plate capacitor is constructed of two square plates, size LxL, separated by distance d.The
plates are given charge tQ.'t\rhat is the ratio EtlEt of the final electric field strength E1 to the initial
electric field strength E1 if:
a. Q is doubled?
E{
:ffi
Ei
n+
tf
.os1rs
= Q./n,
tL
CIis Jo*b\.J (A = to^t*"^{)
F+- Qt --or
Ei
G
b. Z is doubled?
T{
L ls do-^b\el *hq* At=tlAt
cL"F
lQ. = co'^s{o.*t)
E-.
A-.
= -=
tu
Ai-
m,-
I
q
c. dis doubied?
E A*s t ot dj*l o^ J-
Er -r
ki
'l
23. A ball hangs from a thread between two vertical capacitor plates. initially,
the ball hangs straight down. The capacitor plates are charged as shown, then
the bali is given a small negative charge. The ball moves to one side, but not
enough to touch a capacitor plate.
a. Draw the ball and thread in the ball's new equilibrium position.
b. In the space below, draw a free-body diagram of the ball when in its new
ru
EH
position.
FT
)
FE
i3
The Electric Field
.
cHAprER
26 26-9
26.6 Motion of a Gharged Particle in an Electric Field
26.7 Motion of a Dipole in an Electric Field
24. Asmall positive charge 4 experiences
placed at point 1. In terms of
Fj when
a force of magnitude
{:
a. What is the force on charge q
at point 3?
1?
,c. What is the foice on a chat ge 2q ai potr$ 2?
d. What is the force on a charge -2q at point 2?
b. What is the force on a charge 3q atpoint
3
,/
F1
3F
If
- lf
,
i'=3t't
,/
3J
,
,
a. Positive object.
*o {ho ri3\^{.
b. Negative object.
A..o\or"o.t"s
7'u'
,./
-r/
25. A small object is released from rest in the center of the capacitor. For
each situation, does the object move to the right, to the left, or remain
in place? If it moves, does it accelerate or move at constant speed?
A.clcno.*cs
E,
HEI
ltl
liil_l
H
lll1l
l_l
t_l
l-l
lJ
lo {h. \uft.
c. Neutral object.
Rq-u\o,,ihs
i^
p\acc.
26. Positively and negatively charged objects, with equai masses and equal
quantities of charge, enter the capacitor in the directions shown.
a. Use solid lines to draw their trajectories on the figure if their initial
velocities are fast.
b. Use dashed lines to draw their trajectories on the figure if their initial
velocities are slow.
27
io
. An electron is launched from the positive plate at a 45" angle.It does not
have sufficient speed to make it to the negative plate. Draw its trajectory on
the figure.
'd
rll
o
Pn.uboli. , lot'di^3 o+ "15"
N
o
H
l_l
E
.
26-10
cHAprER
28. First
a proton, later an electron are released
26
The Electric Field
from rest in the center ofa capacitor.
a. Compare the forces on the two charges. Are they equal, or is one larger? Explain.
**o c\no."qe,s o,rs qqw*\ ' F= qE rhoy €.& hovo
tL," so,r^c o.unourtt 0f A*"{" qnd orre- p\".ccl i;t {ho- sqyn e ti"ld.
Thc. for"ns
o,^ *hs
b. Compare the accelerations of the fwo charges. Are they equal, or is one larger? Explain.
Thc orccsturo{io\^ of {|.* o\*t"orn
hos q. swu,llsr yvrq,SS. o. = .f-
is
lor3cr
bc-cquse-
*ho
"l*{ro,^,
5
v
29. The figure shows an electron orbiting a proton in a hydrogen atorn.
a. What force or forces act on the electron?
Tho e\cJ'ic fo".".
b. Draw and label the following vectors on the figure: the electron's velocity
i and acceleration d, the net force d* on the electron, and the electric
field E at the position of the electron.
a charged particle always move in the direction of the electric field?
give an example that is otherwise.
30. Does
If so, explain why. If
not,
cowrponertl
lf *ho ch..rqed Dortic\c hqs o.n ini\io.\ vc\oci\'tn
* diff""e,^1
in q p."pc^di..^\i" Al.o{ior. tha* 1+ r^ro''ld kovtl
N
o.
diro.ti on.' thanr *h* {i.ii. For a-xo.AP\Q,, o char5c
circu(or *o{\ o. c\s in pv ob\g,r t )1 o.boro
oo*^ld n^ove
in
.
31
. Three charges are placed at the comers of a triangle. The ++ charge has
twice the quantity of charge of the two - charges; the net charge is zero.
a. Draw the force vectors on each ofthe charges.
b. Is the triangle in equilibrium? No
If not, draw the equilibrium
orientation directly beneath the triangle that is shown.
c. Once in the equilibrium orientation, will the triangle move to the right,
move to the left, rotate steadily, or be at rest? Explain.
lhe {rio.r',q\s r"ri\\ re-v\qir^ ivr
T,n eqv.ilitriu",r
'
plccr be"o,^se th" net f-o r.z. i s zzto q nd
*he, ns+ 1o"1.^. is zLr6.
(-r
/\,/+\
/\ -\
,/-
n
l+l
;
l+l
€
l+l
l+l
-+lil
-41+l
lll
--r Fl
EJ
EI
co
d