Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
DNA The molecule of heredity Replication of the genetic code DNA = recipe book • Instructions for ALL proteins are encoded by DNA • DNA resides in the nucleus • To pass on to their offspring the instructions for life, cells must replicate DNA prior to reproduction How do we know DNA is the genetic code of life? • Some late 19th century observations of dividing cells gave us some clues Observations on dividing cells • Late 1800’s; Walther Flemming sees “threads” moving during cell division • Threads appear paired prior to cell division • Paired threads separate just prior to division • Named the “thread separating” process Mitosis Observations on thread # • Thread # differs between species – Roundworms = 4; Peas = 14; Humans = 46 • Thread # is identical within species – All roundworms = 4 • Same between cells within an individual • Threads were named chromosomes (“colored bodies”) which consist of both DNA & protein Recall that chromosomes are hypercoiled DNA Is it DNA or proteins that are important?* • Chromosomes consist of both, so how did scientists identify which one holds instructions for reproduction of cells? DNA’s “discovery” • 1952: Hershey & Chase find that bacteriophage virus somehow infects and “reprograms” bacteria to make more virus. – Consists only of external protein coat and internal DNA • A perfect model! • Is it the DNA or the protein? Label DNA & protein separately • Radioactive Sulfur incorporates into proteins only. Why? • Heavy bacterial cells settle, while lighter phage particles remain in solution. (where’s the radioactivity?) Label DNA & protein separately • Radioactive Phosphorous incorporated into DNA. Why? • Heavy bacterial cells settle, while lighter phage particles remain in solution. (where’s the radioactivity?) DNA encodes instructions for replication! DNA’s structure What does it look like? Does its structure suggest how replication is accomplished? Monomers of DNA = Nucleotides • Repeated phosphate, sugar, base motif of ALL nucleotides • Phosphate-sugar backbone • Base = only difference between nucleotides Nitrogenous Bases • Purines: G, A; 2 nitrogenous rings • Pyrimidines: C, T; 1 nitrogenous ring Who discovered the structure? • J. Watson & F. Crick deduced doublestranded, helical structure from Rosalind Franklin’s X-ray crystallographic image of a DNA molecule. Observations & Conslusions • Molecule is of uniform width • Amounts of A & T are identical; same for C & G • H-bonds hold bases of neighboring strands together – suggests precise complimentarity between nucleotides – Adenine always pairs with Thymine; Cytosine always pairs with Guanine Chemical structure Extensions • Sequence possibilities are limitless (variation in sequence could account for the diversity of life.) • Those “threads” (chromosomes) we saw separating with dividing cells must be DNA molecules Structure also suggests mechanism of replication • Pull strands apart; now each strand serves as template for a new strand • Semiconservative model: ½ parent molecule is conserved in each daughter molecule Replication • Begins @ multiple replication centers • Helicase unwinds and separates DNA strands (bubble) • DNA polymerase adds bases opposite the template (parent strand) Structure determines direction • Strands are anti-parallel • Each has a 5’ and a 3’ end – Refers to Carbon atom in sugar ring (i.d. purposes) • DNA polymerase can only add nucleotides to the 3’ end of a strand Consequences of polarity • One strand is continuously replicated • The other is replicated in fragments (Okazaki fragments) • DNA ligase joins these fragments to complete the new molecule • Other polymerases proofread & edit Summary of DNA Replication Substrates Enzymes Products 1. Template DNA strand 1. 1. Parent DNA molecule 2. 2. DNA polymerase 2. 3.