Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
http://statwww.epfl.ch 2. Probability Probabilité et Statistique I — Section 2.1 1 http://statwww.epfl.ch Petit Vocabulaire Mathematics English Français set un ensemble A∪B union l’union A∩B Ac intersection l’intersection complement of A (in Ω) le complémentaire de A (en Ω) A \ B difference la différence A ∆ B symmetric difference la différence symmétrique A×B Cartesian product le produit cartesien cardinality {Aj }n pairwise disjoint j=1 partition le cardinal {Aj }n disjoint deux à deux j=1 une partition permutation une permutation combination une combinaison binomial coefficient r) un coéfficient binomial (Cn multinomial coefficient un coéfficient multinomial indistinguishable indifférentiable colour-blind daltonien (ienne) Ω, A, B . . . |A| n r n n1 ,...,nr Probabilité et Statistique I — Section 2.1 2 http://statwww.epfl.ch Petit Vocabulaire Probabiliste Mathematics English Français one fair die (several fair dice) un dé juste (plusieurs dés justes) random experiment une expérience aléatoire Ω sample space l’ensemble fondamental ω outcome, elementary event une épreuve, un événement élémentaire event un événement event space l’espace des événements sigma-algebra une tribu probability distribution/probability function une loi de probabilité probability space un espace de probabilité inclusion-exclusion formulae formule d’inclusion-exclusion probability of A given B la probabilité de A sachant B independence indépendance (mutually) independent events les événements (mutuellement) indépendants pairwise independent events les événements indépendants deux à deux conditionally independent events les événements conditionellement indépendants A, B, . . . F P (Ω, F , P) P(A | B) Probabilité et Statistique I — Section 2.1 3 http://statwww.epfl.ch 2.1 Probability Spaces Contents Elementary examples of probability, motivation Ideas of random experiment, probability space, sample space, event space, probability measure, inclusion-exclusion formulae References: Ross (Chapter 2); Ben Arous notes (II.1–II.3). Exercises: 19–36 of Recueil d’exercices. Probabilité et Statistique I — Section 2.1 4 http://statwww.epfl.ch Motivation: Game of Dice Example (Two dice): Two fair dice are rolled, one red and one green. (a) What is the set of all possible outcomes? (b) Which outcomes give a total of 6? (c) Which outcomes give a total of 12? (d) Which outcomes give an even total? (e) What are the probabilities of the events in (b), (c), (d)? Probabilité et Statistique I — Section 2.1 • 5 http://statwww.epfl.ch Computation of Probabilities Could try and compute probabilities for events such as (b), (c), (d) by rolling the dice many times, and setting probability of event = # times event occurs . # times experiment performed But this is a physical answer, rather than a mathematical one, not always possible, only ever available after a lot of work (how many times must the dice be rolled?), and liable to give different answers each time — unsatisfactory! Probabilities in simple examples can often be computed using symmetry. This fails in more complicated cases — must build mathematical model, based on the ideas of a random experiment and probability space. Probabilité et Statistique I — Section 2.1 6 http://statwww.epfl.ch Random Experiment Definition: A random experiment (une expérience aléatoire) is an ‘experiment’ whose outcome is (or can be treated as) random. Example 2.1: I toss a coin. Example 2.2: The number of punctures I get going home. Example 2.3: I roll two fair dice, one red and one green. Example 2.4: The number of emails I receive today. Example 2.5: The waiting time to the end of this lecture. Example 2.6: The change in the Swiss stock market (SMI) in 2003. Example 2.7: The weather here at noon tomorrow. A random experiment is modelled by a probability space (un espace de probabilité). Probabilité et Statistique I — Section 2.1 7 http://statwww.epfl.ch Probability Space (Ω, F, P) Definition: A probability space (Ω, F, P) is a mathematical object associated to a random experiment, consisting of three things: • a set Ω, the sample space (ensemble fondamental ), which contains all the possible outcomes (épreuves, événements élémentaires) of the experiment; • a collection F of subsets of Ω. These subsets are called events (événements), and F is called the event space (l’espace des événements); • a function P : F 7→ [0, 1] called a probability function (loi de probabilité), which associates a probability P(A) to each A ∈ F. We look at each of these in turn. Probabilité et Statistique I — Section 2.1 8 http://statwww.epfl.ch Sample Space Ω The sample space Ω is a set whose elements represent all the possible outcomes for a random experiment. Each element ω ∈ Ω is associated to a distinct outcome. Ω is analogous to the universal set. Ω is non-empty. (If Ω = ∅ then nothing interesting can happen.) Ω can be finite, countable, or uncountable. Exercise: Write down the sample spaces for Examples 2.1–2.7. Probabilité et Statistique I — Section 2.1 9 http://statwww.epfl.ch Event Space F F is a set of subsets of Ω which represent the events of interest. Example 2.3 (ctd): Consider the events A ‘the red die shows 4’, B ‘the total is even’, C ‘the green die shows 2’, and A ∩ B ‘the red die shows 4 and the total is even’. • Definition: An event space F is a set of subsets of Ω such that: 1. F is non-empty; 2. if A ∈ F then Ac ∈ F; 3. if {Ai }∞ i=1 are all members of F, then S∞ i=1 Ai ∈ F. F is also called a sigma-algebra (une tribu). Exercise: Write down event spaces for Examples 2.1–2.4. Probabilité et Statistique I — Section 2.1 10 http://statwww.epfl.ch Event Space F, II Let A, B, C, {Ai }∞ i=1 be members of F. The axioms for F imply that Sn • i=1 Ai ∈ F, • Ω ∈ F, ∅ ∈ F, • A ∩ B ∈ F, A \ B ∈ F, Tn • i=1 Ai ∈ F. A ∆ B ∈ F, If Ω is countable, F is often taken to be the set of all subsets of Ω. This is the largest (and richest) possible event space for Ω. Probabilité et Statistique I — Section 2.1 11 http://statwww.epfl.ch Event Space F, III Different event spaces can be defined for the same sample space. Example 2.3 (ctd): I roll two fair dice, one red and one green. (a) What is my event space F1 ? (b) I tell my friend only the total. What is his event space F2 ? (c) My friend looks at the dice himself, but he is colour-blind. What is now his event space F3 ? • Usually the event space is clear from the context, but it is important to write both Ω and F out explicitly, in order to avoid confusion. It can also be helpful when so-called ‘paradoxes’ arise (usually because of an unclear or faulty mathematical formulation of the problem). It is essential to give Ω and F in exercises, tests, and exams. Probabilité et Statistique I — Section 2.1 12 http://statwww.epfl.ch Three Dice Problem — Galileo (1564–1642) Three fair dice are thrown. Let Ti be the event ‘the total is i’, for i = 3, . . . , 18. Which is the more probable, T9 or T10 ? T9 can occur if the dice show (6, 2, 1), (5, 3, 1), (5, 2, 2), (4, 4, 1), (4, 3, 2), (3, 3, 3). T10 can occur if the dice show (6, 3, 1), (6, 2, 2), (5, 4, 1), (5, 3, 2), (4, 4, 2), (4, 3, 3). So they are equally probable. True or false? Probabilité et Statistique I — Section 2.1 13 http://statwww.epfl.ch Example 2.8 (Family planning): A woman planning her family considers the following schemes, on the assumption that boys and girls are equally likely on each delivery: (a) have three children; (b) bear children until the first girl is born, or until three are born, whichever is sooner, and then stop; (c) bear children until there is one of each sex or until there are three, whichever is sooner, and then stop. Let Bi denote the event that i boys are born, and let C denote the event that there are more girls than boys. Find P(B1 ) and P(C) under the schemes above. • Probabilité et Statistique I — Section 2.1 14 http://statwww.epfl.ch Probability Function P Definition: A probability function P associates a probability to each element of an event space F, with the properties: 1. if A ∈ F, then 0 ≤ P(A) ≤ 1; 2. P(Ω) = 1; 3. if {Ai }∞ i=1 are pairwise disjoint (that is, Ai ∩ Aj = ∅, i 6= j), then ! ∞ ∞ [ X P Ai = P(Ai ). i=1 Probabilité et Statistique I — Section 2.1 j=1 15 http://statwww.epfl.ch Properties of P Theorem 2.1: Let A, B, {Ai }∞ i=1 be events of a probability space (Ω, F, P). Then (a) P(∅) = 0, (b) if A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B), (c) P(Ac ) = 1 − P(A), P(A ∪ B) = P(A) + P(B) − P(A ∩ B), (d) if A ⊂ B, then P(A) ≤ P(B), and P(A \ B) = P(A) − P(B) S∞ P∞ (e) P ( i=1 Ai ) ≤ i=1 P(Ai ) (Boole’s inequality), S∞ (f) if A1 ⊂ A2 ⊂ · · ·, then limn→∞ P(An ) = P ( i=1 Ai ), T∞ (g) if A1 ⊃ A2 ⊃ · · ·, then limn→∞ P(An ) = P ( i=1 Ai ). Probabilité et Statistique I — Section 2.1 16 http://statwww.epfl.ch Continuity of P Recall that a function f is continuous at x if for any sequence {xn } such that lim xn = x, we have lim f (xn ) = g(x). n→∞ n→∞ Parts of (f) and (g) of Theorem 2.1 can be extended to show that for any sequences of sets for which lim An = A, we have lim P(An ) = P(A). n→∞ n→∞ Hence P is called a continuous set function. Probabilité et Statistique I — Section 2.1 17 http://statwww.epfl.ch Inclusion-Exclusion Formulae If A1 , . . . , An are events of a probability space (Ω, F, P ), then P(A1 ∪ A2 ) = P(A1 ) + P(A2 ) − P(A1 ∩ A2 ) P(A1 ∪ A2 ∪ A3 ) = P(A1 ) + P(A2 ) + P(A3 ) −P(A1 ∩ A2 ) − P(A1 ∩ A3 ) − P(A2 ∩ A3 ) +P(A1 ∩ A2 ∩ A3 ) .. . P n [ i=1 Ai ! = n X r=1 (−1) r+1 X P(A1 ∩ · · · ∩ Air ). 1≤i1 <···<ir ≤n The number of terms in the general formula is n n n n n + + + ···+ + = 2n − 1. 1 2 3 n−1 n Probabilité et Statistique I — Section 2.1 18 http://statwww.epfl.ch Example 2.9: What is the probability of at least one 6 when I roll three fair dice? • Example 2.10: An urn contains 1000 lottery tickets numbered from 1 to 1000. One is selected at random. A fairground performer offers to pay $3 to anyone who has aleady paid him $2, if the number on the ticket is divisible by 2, 3 or 5. Would you pay him your $2 before the draw? (You will lose your money if the ticket number is • not divisible by 2, 3, or 5.) Probabilité et Statistique I — Section 2.1 19