Download Test 1 Practice Problems

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 113 Review Sheet for Test #1
12)
Convert the angle to a decimal in degrees. Round the
answer to two decimal places.
1) 40°53ʹ34ʹʹ
π
5
2) 303°48ʹ24ʹʹ
s
4 cm
3) 177°26ʹ4ʹʹ
Solve the problem.
13) For a circle of radius 4 feet, find the arc length
s subtended by a central angle of 30°. Round to
the nearest hundredth.
Convert the angle to D° Mʹ Sʹʹ form. Round the answer to
the nearest second.
4) 187.89°
5) 71.83°
14) For a circle of radius 4 feet, find the arc length
s subtended by a central angle of 60°. Round to
the nearest hundredth.
6) 305.51°
Convert the angle in degrees to radians. Express the
answer as multiple of π.
15) 45°
If s denotes the length of the arc of a circle of radius r
subtended by a central angle θ, find the missing quantity.
7) r = 12.97 centimeters, θ = 2.7 radians, s = ?
16) 160°
8) r = 9.1 inches, θ = 60°, s = ?
17) 87°
1
9) r = feet, s = 7 feet, θ = ?
2
Convert the angle in radians to degrees.
2π
18)
5
10) s = 3.36 meters, θ = 1.4 radians, r = ?
Find the length s. Round the answer to three decimal
places.
11)
19)
π
6
20)
9π
10
s
Two sides of a right triangle ABC (C is the right angle) are
given. Find the indicated trigonometric function of the
given angle. Give exact answers with rational
denominators.
π
4
9 m
21) Find sin A when a = 3 and b = 8.
1
22) Find sin B when b = 3 and c = 8.
39) csc π
4
23) Find cos A when a = 10 and b = 3.
40) tan 45°
24) Find cos A when a = 3 and c = 15
41) tan 30°
25) Find csc B when a = 3 and b = 10.
42) sin 26) Find sec B when a = 5 and b = 8.
π
6
Find the exact value of the expression. Do not use a
calculator.
43) cot 45° - sin 45°
27) Find tan A when a = 9 and b = 8.
28) Find tan B when a = 7 and b = 3.
44) cos 60° + tan 60°
29) Find cot A when a = 4 and c = 9.
π
π
45) cot - sin 3
3
30) Find cot A when b = 4 and c = 9.
Solve the right triangle using the information given.
Round answers to two decimal places, if necessary.
Find the exact value. Do not use a calculator.
20π
46) cos 3
47) sin 855°
Find the exact value of the expression. Do not use a
calculator.
7π
5π
48) tan + tan 4
4
31) b = 8, α = 40°; find a, c, and β
32) a = 5, α = 30°; find b, c, and β
33) a = 7, b = 4; find c, α, and β
49) cos Find the exact value. Do not use a calculator.
34) sin 0
50) tan 150° cos 210°
Use a calculator to find the approximate value of the
expression rounded to two decimal places.
51) sin 82°
35) tan 2π
36) cos π
5π
+ tan 3
3
π
2
52) tan 51°
37) cos π
53) sec 38) tan (29π)
2
π
10
54) cot π
7
Two sides of a right triangle ABC (C is the right angle) are
given. Find the indicated trigonometric function of the
given angle. Give an exact answer with a rational
denominator.
68)
55) cos 4
In the problem, sin θ and cos θ are given. Find the exact
value of the remaining trigonometric functions.
1
2 2
, cos θ = 56) sin θ = 3
3
5
9
57) sin θ = Find sin θ.
7
3
, cos θ = 4
4
69)
Use the identities of the trigonometric functions to find
the exact value of the expression. Do not use a calculator.
58) sin2 35° + cos2 35°
7
2
59) tan 55° cot 55°
Find csc θ.
Find the exact value of the indicated trigonometric
function of θ.
8
60) tan θ = - , θ in quadrant II
Find cos θ.
9
9
61) sec θ = , θ in quadrant IV
4
70)
3
Find tan θ.
7
Find cos θ.
62) cos θ = 15 3π
, < θ < 2π
2
17
Find cot θ.
71)
2
63) sin θ = - , tan θ > 0
5
Find sec θ.
5
1
64) sin θ = , sec θ < 0
2
Find cos θ
Find sec θ.
8
and tan θ.
9
72)
Use the even-odd properties to find the exact value of the
expression. Do not use a calculator.
65) sin (-30°)
2
66) sec (-60°)
Find tan θ.
67) cos (-150°)
3
79) y = 3 sin(πx + 4)
Find a cofunction with the same value as the given
expression.
73) sin 23°
8
y
6
4
74) tan 77°
2
π
75) tan 8
-
-2
Solve the problem.
76) A surveyor is measuring the distance across a
small lake. He has set up his transit on one
side of the lake 100 feet from a piling that is
directly across from a pier on the other side of
the lake. From his transit, the angle between
the piling and the pier is 55°. What is the
distance between the piling and the pier to the
nearest foot?

2
3

2
3
x
-4
-6
-8
π
80) y = 5 cos(-4x + )
2
8
y
6
77) A straight trail with a uniform inclination of
11° leads from a lodge at an elevation of 700
feet to a mountain lake at an elevation of 5200
feet. What is the length of the trail (to the
nearest foot)?
4
2
-
-2
Graph the function. Show at least one period.
π
78) y = -3 sin(4x + )
2
8
-4
-6
y
-8
6
81) y = -3 cos(x - π)
4
5
2
-
-2
x
y
4

2
3
3
x
2
1
-4
-6
-2
-1
-2
-8
-3
-4
-5
Match the function to its graph.
π
82) y = tan (x + )
2
4
2
x
83) y = -tan (x + π)
87) y = sec (2x)
10
Graph the function.
y
8
π
84) y = tan (x - )
4
6
4
y
2
7
-2
-

-2
2
x
-4
-6
-7
7
-8
x
-10
88) y = 3 csc (2x)
10
-7
y
8
6
π
85) y = -cot (x - )
4
4
2
y
7
-
-
2
-2
-4
-6
-8
-7
7
-10
x
-7
86) y = -csc x
y
3
-2

-
2
x
-3
5

2

x
Answer Key
Testname: 113REVT1 FA14
1) 40.89°
2) 303.81°
3) 177.43°
4) 187°53ʹ24ʹʹ
5) 71°49ʹ48ʹʹ
6) 305°30ʹ36ʹʹ
7) 35 cm
8) 9.5 in.
9) 14 radians
10) 2.4 m
11) 7.069 m
12) 2.513 cm
13) 2.09 ft
14) 4.19 ft
π
15)
4
16)
8π
9
17)
29π
60
18) 72°
19) 30°
20) 162°
3 73
21)
73
22)
3
8
23)
3 109
109
24)
222
15
25)
109
10
26)
89
5
27)
9
8
28)
3
7
29)
65
4
30)
4 65
65
31) a = 6.71
c = 10.44
β = 50°
6
Answer Key
Testname: 113REVT1 FA14
32) b = 8.66
c = 10
β = 60°
33) c = 8.06
α = 60.26°
β = 29.74°
34) 0
35) 0
36) 0
37) -1
38) 0
39) 2
40) 1
3
41)
3
42)
1
2
43)
2 - 2
2
44)
1 + 2 3
2
45) - 46) - 47)
3
6
1
2
2
2
48) 0
1 - 2 3
49)
2
50) - 5 3
6
51) 0.99
52) 1.23
53) 1.05
54) 2.08
55) -0.65
56) 2 2
4
57)
3
58) 1
59) 1
60) - 9 145
145
61) - 65
4
7
Answer Key
Testname: 113REVT1 FA14
62) - 15
8
63) - 5 21
21
3
3
, tan θ = - 2
3
64) cos θ = - 65) - 1
2
66) 2
67) - 3
2
68) sin θ = 5 106
106
69) csc θ = 53
2
70) cos θ = 7 58
58
71) sec θ = 89
5
72) tan θ = 9
2
73) cos 67°
74) cot 13°
3π
75) cot 8
76) 143 feet
77) 23,584 feet
78)
8
y
6
4
2
-
-2

2
3
x
-4
-6
-8
8
Answer Key
Testname: 113REVT1 FA14
79)
8
y
6
4
2
-
-2

2
3

2
3
x
-4
-6
-8
80)
8
y
6
4
2
-
-2
x
-4
-6
-8
81)
5
y
4
3
2
1
-2
-1
2
x
-2
-3
-4
-5
9
Answer Key
Testname: 113REVT1 FA14
82)
y
3
-
2
-

2

3
2
2
5
2
3

2

3
2
2
5
2
3
x
-3
83)
y
3
-
2
-
x
-3
84)
y
7
-7
7
x
-7
10
Answer Key
Testname: 113REVT1 FA14
85)
y
7
-7
7
x
-7
86)
y
3
-2
-

2

2
x
-3
87)
10
y
8
6
4
2
-2
-
-2
x
-4
-6
-8
-10
11
Answer Key
Testname: 113REVT1 FA14
88)
10
y
8
6
4
2
-
-
2
-2

2

x
-4
-6
-8
-10
12