Download Physics Semester 1 Review

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Fictitious force wikipedia , lookup

Jerk (physics) wikipedia , lookup

Force wikipedia , lookup

Specific impulse wikipedia , lookup

Faster-than-light wikipedia , lookup

Inertia wikipedia , lookup

Relativistic mechanics wikipedia , lookup

Kinematics wikipedia , lookup

Variable speed of light wikipedia , lookup

Heat transfer physics wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Adiabatic process wikipedia , lookup

Thermodynamic temperature wikipedia , lookup

Economizer wikipedia , lookup

Hunting oscillation wikipedia , lookup

Classical central-force problem wikipedia , lookup

Work (thermodynamics) wikipedia , lookup

Centripetal force wikipedia , lookup

Transcript
Physics
Unit 1: Introduction and Kinematics Review
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Know about scientific method, units, fundamental units, unit prefixes, precision, accuracy, significant figures, vectors, scalars
Convert 120 Tm to m
In the process of delivering milk, a milkman, walks 100 m due east from his truck. He then turns around and walks 20 m due
west. What is the milkman’s displacement relative to his truck (magnitude and direction)? What distance did he travel?
A pigeon flew 10 km across town with an average speed of 5 m/s. How long, in hours, did it take the pigeon to make this
journey?
2
A car, starting from rest, accelerates in a straight-line path at a constant rate of 2 m/s . How far will the car travel in 10
seconds?
The minimum takeoff speed for a certain airplane is 50 m/s. What minimum acceleration is required if the plane must leave
a runway of length 2000 m? Assume the plane starts from rest at one end of the runway.
Water drips from rest from a leaf that is 2 m above the ground. Neglecting air resistance, what is the speed of each water
drop when it hits the ground?
What maximum height will be reached by a stone thrown straight up with an initial speed of 5 m/s?
A cheetah is walking at a speed of 0.5 m/s when it observes a gazelle 15 m directly ahead. If the cheetah accelerates at 3
2
m/s , how long does it take the cheetah to reach the gazelle if the gazelle doesn’t move?
Be able to read graphs and calculate speed, velocity, and acceleration from them.
A jumper in the long-jump goes into the jump with a speed of 5 m/s at an angle of 20° above the horizontal. What is the
jumper’s horizontal speed as they jump? What is their vertical speed?
A sailboat leaves a harbor and sails 21 km in the direction 15° north of east, where the captain stops for lunch. A short time
later, the boat sails 2 km in the direction 75° south of east. What is the magnitude of the resultant displacement?
An eagle is flying due east at 5 m/s carrying a gopher in its talons. The gopher manages to break free at a height of 50 m.
What is the magnitude of the gopher’s velocity as it reaches the ground?
A ball is thrown horizontally from the top of a 100 m tall building with an initial speed of 5 m/s. How far from the base of the
building did the ball land?
A swimmer swims with a velocity of 15 m/s south relative to the water. The current of the water is 2 m/s relative to the
shore. If the current is moving west, what is the velocity of the swimmer relative to the shore?
3.
4.
Displacement: 100 π‘š βˆ’ 20 π‘š = πŸ–πŸŽ π’Ž;
Distance: 100 π‘š + 20 π‘š = 𝟏𝟐𝟎 π’Ž
𝑣=5
π‘š
𝑠
10 π‘˜π‘š 103 π‘š
(
𝑠
) = 10000 π‘š
βˆ’9.8
=
10000 π‘š
𝑑
10000 π‘š
5
2000 𝑠
Convert:
π‘Ž=2
π‘š
(
1β„Ž
3600 𝑠
) = 0.56 β„Ž
π‘š
π‘š
1
π‘š
𝑠
2
𝑠
π‘₯ = 0 π‘š + (0 ) (10 𝑠) + (2 2 ) (10 𝑠)
2
π‘₯ = 𝟏𝟎𝟎 π’Ž
𝑣
2
, π‘₯ = 2000 π‘š, 𝑣0 = 0
𝑠
= 𝑣02 +
π‘š 2
π‘š
𝑠
,π‘Ž =?
2500
π‘š 2
𝑠
π‘Ž = 𝟎. πŸ”πŸπŸ“ π’Ž/𝒔
7.
π‘š
𝑠
, π‘Ž = βˆ’9.8
π‘š
𝑠2
,𝑣 = ?
𝑣 2 = 𝑣02 + 2π‘Ž(𝑦 βˆ’ 𝑦0 )
π‘š
𝑠
𝑠
𝑣 2 = (0 ) + 2 (βˆ’9.8 2 ) (0 π‘š βˆ’ 2 π‘š)
𝑣 = πŸ”. πŸπŸ”
8.
𝑣0 = 5
𝑣
2
π‘š
π‘š2
𝒔
,𝑣 = 0
π‘š
𝑠
, π‘Ž = βˆ’9.8
π‘š
𝑠2
,𝑦 =?
π‘š 2
π‘š
𝑠
𝑠
(0 ) = (5 ) + 2 (βˆ’9.8 2 ) (𝑦 βˆ’ 0 π‘š)
βˆ’25
π‘š2
𝑠2
π‘š
𝑠
𝑣0 = 0.5
𝑠
, π‘₯ = 15 π‘š, π‘Ž = 3
𝑠2
,𝑑 =?
1
2
π‘š
1
π‘š
𝑠
π‘š
2
𝑠
15 π‘š = 0 π‘š + (0.5 ) 𝑑 + (3 2 ) 𝑑 2
𝑑=
3π‘š
2 𝑠2
𝑠
𝑠
π‘š
𝑠2
π‘š
𝑠
, π‘₯ = ? ; 𝑦: 𝑦0 = 100 π‘š, 𝑦 = 0 π‘š, π‘Ž =
, 𝑣0𝑦 = 0
π‘š
𝑠
1
π‘š
1
π‘š
𝑠
2
𝑠
0 π‘š = 100 π‘š + (0 ) 𝑑 + (βˆ’9.8 2 ) 𝑑 2
π‘š
βˆ’100 π‘š = (βˆ’4.9 2 ) 𝑑 2
π‘š2
𝑠2
= 𝑑2
𝑑 = πŸ’. πŸ“πŸ 𝒔
find x: π‘₯ = π‘₯0 + 𝑣0π‘₯ 𝑑
π‘₯ = 0 + (5 ) (4.52 𝑠) = 𝟐𝟐. πŸ” π’Ž
15. π‘£π‘†π‘Š = 15
π‘š
𝑠
𝑠
π‘†π‘œπ‘’π‘‘β„Ž, π‘£π‘ŠπΊ = 2
π‘š
𝑠
π‘Šπ‘’π‘ π‘‘
x
y
0
-15
-2
0
-2
-15
2
2
= √(βˆ’2) + (βˆ’15) = 15.1 π‘š/𝑠
𝑣𝑆𝐺
πœƒ = π‘‘π‘Žπ‘›βˆ’1 βˆ’
15
𝒔
π‘š
π‘₯ = π‘₯0 + 𝑣0 𝑑 + π‘Žπ‘‘ 2
0=(
π‘š 2
) 𝑑 2 + (0.5 ) 𝑑 βˆ’ 15 π‘š
𝑠
3
2
βˆ’0.5±βˆš(0.5)2 βˆ’4( )(βˆ’15)
3
2
2( )
11. Horizontal: 𝑣0π‘₯ = 5
Vertical: 𝑣0𝑦 = 5
π‘š
𝑠
π‘š
𝑠
= πŸ‘ 𝒔, βˆ’3.33 𝑠
π‘π‘œπ‘  20° = πŸ’. πŸ•πŸŽ
𝑠𝑖𝑛 20° = 𝟏. πŸ•πŸ
π’Ž
π’Ž
𝒔
𝒔
12.
21 km @ 15° N of E
2 km @ 75° S of E
= 82.4°
𝑣𝑆𝐺 = πŸπŸ“. 𝟏 𝒂𝒕 πŸ–πŸ. πŸ’° 𝑺 𝒐𝒇 𝑾
𝑦 = 𝟏. πŸπŸ– π’Ž
9.
π‘š 2
βˆ’2
π’Ž
= (βˆ’19.6 2 ) 𝑦
π‘š
𝑠
15 m/s S
2 m/s W
2π‘Ž(𝑦 βˆ’ 𝑦0 )
𝑠
π‘š
𝑣𝑆𝐺 = π‘£π‘†π‘Š + π‘£π‘ŠπΊ
𝑠2
π’Ž
𝑠
= 𝑣02 +
π‘š 2
𝑠
π‘š
π‘š 2
𝑣 = 39.2
π‘š
find t: 𝑦 = 𝑦0 + 𝑣0𝑦 𝑑 + π‘Žπ‘‘ 2
20.41
𝟐
𝑦0 = 2 π‘š, 𝑣0 = 0
2
𝑠
𝑠
= (4000 π‘š)π‘Ž
𝑠2
π‘š
𝑠
2
(50 ) = (0 ) + 2π‘Ž(2000 π‘š βˆ’ 0 π‘š)
π‘š2
, 𝑦0 = 50 π‘š, π‘Žπ‘¦ =
+ 2π‘Žπ‘¦ (𝑦 βˆ’ 𝑦0 )
π‘š 2
14. π‘₯: 𝑣0π‘₯ = 5
βˆ’9.8
2π‘Ž(π‘₯ βˆ’ π‘₯0 )
𝑠
𝑠
𝑣 = √(5 ) + (31.30 ) = πŸ‘πŸ. πŸ• π’Ž/𝒔
2
𝑣 = 50
π‘š
combine: 𝑣 = βˆšπ‘£π‘₯2 + 𝑣𝑦2
,π‘₯ = ?
𝑠
1
6.
, 𝑦: 𝑣0𝑦 = 0
𝑠
𝑣𝑦 = 31.30
π‘₯ = π‘₯0 + 𝑣0 𝑑 + π‘Žπ‘‘ 2
π‘š
= 9.67° 𝑁 π‘œπ‘“ 𝐸
, 𝑦 = 0 π‘š, 𝑣𝑦 = ?
𝑣𝑦2 = 980
, 𝑑 = 10 𝑠, 𝑣0 = 0
𝑠2
3.51
20.80
π‘š
𝑣𝑦2 = (0 ) + 2 (βˆ’9.8 2 ) (0 π‘š βˆ’ 50 π‘š)
= 𝟐𝟎𝟎𝟎 𝒔
π‘š
𝑠
π‘š
𝑠2
2
2
𝑣𝑦 = 𝑣0𝑦
π›₯𝑑
𝑑=
5.
1 π‘˜π‘š
13. π‘₯: 𝑣0π‘₯ = 5
π›₯π‘₯
𝑣=
5
πœƒ = π‘‘π‘Žπ‘›βˆ’1
, π›₯π‘₯ = 10 π‘˜π‘š
Convert:
π‘š
π‘Ÿ = √20.802 + 3.512 = 21.1 π‘˜π‘š
x
20.28
0.52
20.80
y
5.44
-1.93
3.51
Physics
Unit 2: Forces and Uniform Circular Motion
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Terms like Velocity, Force, Acceleration, Equilibrium, Inertia, apparent weight, Normal force, True Weight,
Gravitational Force, Applied force, Tension, Uniform Circular Motion, Period, Revolution, radius,
centripetal acceleration, centripetal force, banked and unbanked curves, satellites, orbit, weightlessness,
artificial gravity, Kepler’s Laws of Planetary Motion
Fundamental forces
Difference between g and G
static and kinetic frictional forces
List Newton’s Three Laws of Motion.
difference between mass and weight
What forces do you draw on a freebody diagram?
How is centripetal force different from all the other forces we have studied?
A 100-N force acts on a 75-kg person. What is the acceleration of the person?
A 70-kg ice skater pushes on a box on smooth ice (no friction). He applies 200 N horizontally against the
50-kg box. What are the accelerations of the ice skater and the box?
A 10-kg block rests on a frictionless plane inclined at 60°. What is the acceleration of the block as it slides
down the incline?
A stoplight is suspended by two cables over a street. Weight of the light is 110 N and the cables make a
116° angle with each other. Find the tension in each cable.
A 100-kg man is standing on a bathroom scale while riding an elevator. What does the scale read when
2
the elevator is accelerating upward at 5 m/s ?
14. A 5000-kg car skids to a stop. k = .5. What is the magnitude of the friction force?
15. Find the terminal velocity of a falling mouse in air (𝐴 = 0.004 π‘š2 , π‘š = 0.02 π‘˜π‘”, 𝐢 = 0.5).
16. Convert the angular measure of 40 degrees to radians.
2
17. A stone is in a sling and a boy whirls it around in a circle. If the centripetal acceleration is 50 m/s and the
radius of the circle is 10 cm, what is the speed of the stone?
18. Find the gravitational force of attraction between a 100-kg girl and a 200-kg boy sitting 0.5 meters apart.
19. What is the acceleration due to gravity at an altitude of 1 × 106 π‘š above the earth’s surface? Note: the
radius of the earth is 6.36 × 106 π‘š.
20. Four people are having a tug-o-war game. Ashley pulls left with 20 N, Bert pulls left with 10 N, Charlie pulls
right with 30 N, and Dannie pulls right with 5 N. What is the magnitude of the acceleration of the 5 kg
rope and who wins the game?
21. A 10-g nut is hanging from a spring that has stretched 30 cm because a squirrel is pulling it down. If the
squirrel is pulling with 300 N, what is the spring constant?
7.
9.
14. 𝐹𝑦 : 𝐹𝑁 βˆ’ π‘Š = 0 β†’ 𝐹𝑁 = π‘Š β†’ 𝐹𝑁 =
Only forces acting on the object
𝐹 = π‘šπ‘Ž
100 𝑁 = 75 π‘˜π‘” (π‘Ž)
π‘Ž = 𝟏. πŸ‘πŸ‘
π‘š
(5000 π‘˜π‘”) (9.8 2 ) = 49000 𝑁
𝑠
𝐹π‘₯ : π‘“π‘˜ = πœ‡π‘˜ 𝐹𝑁 = 0.5(49000 𝑁) = πŸπŸ’πŸ“πŸŽπŸŽ 𝑡
π’Ž
π’”πŸ
2π‘šπ‘”
15. Mouse: 𝑣 = √
10.
𝐹𝑁
𝐹𝑁
200 𝑁
𝑣=√
16. 40° (
200 𝑁
π‘š
𝑠
2(0.02 π‘˜π‘”)(9.8 2 )
π‘˜π‘”
(1.21 3 )(0.5)(0.004 π‘š2 )
π‘š
πœ‹
180°
)=
= 𝟏𝟐. πŸ•
π’Ž
𝒔
πŸπ…
πŸ—
π‘Šπ‘π‘œπ‘₯
π‘Šπ‘ π‘˜π‘Žπ‘‘π‘’π‘Ÿ
π‘Šπ‘ π‘˜π‘Žπ‘‘π‘’π‘Ÿ = 70 π‘˜π‘” (9.8
= 686 𝑁
y
x
βˆ’200 𝑁
π‘š
)
𝑠2
π‘Šπ‘π‘œπ‘₯ = 50 π‘˜π‘” (9.8
= 490 𝑁
x
200 𝑁
𝐹𝑁
π‘Š = βˆ’490 𝑁
𝐹 = π‘šπ‘Ž
200 𝑁 = 50 π‘˜π‘” (π‘Ž)
𝒂𝒃𝒐𝒙 = πŸ’. 𝟎 π’Ž/π’”πŸ
𝑠
17. π‘Žπ‘ =
𝐹𝑁
50
π‘š
𝑠2
𝑣2
π‘Ÿ
=
𝑣2
0.10 π‘š
2
2
𝑣 2 = 5π‘š /𝑠
𝑣 = 𝟐. πŸπŸ’ π’Ž/𝒔
π‘Šπ‘¦
18. 𝐹𝑔 = 𝐺
π‘Šπ‘₯
π‘šπ‘€
π‘Ÿ2
𝐹𝑔 = 6.67 × 10βˆ’11
π‘Š
x
π‘π‘š2 (100 π‘˜π‘”)(200 π‘˜π‘”)
π‘˜π‘”2
(0.5 π‘š)2
= πŸ“. πŸ‘πŸ’ ×
πŸπŸŽβˆ’πŸ” 𝑡
y
19. 𝑔 = 𝐺
𝐹𝑁
π‘Šπ‘¦ = βˆ’π‘Š π‘π‘œπ‘  60°
π‘Šπ‘₯ = βˆ’π‘Š 𝑠𝑖𝑛 60°
Forces in x: 𝐹 = π‘šπ‘Ž
βˆ’π‘Š 𝑠𝑖𝑛 60° = π‘šπ‘Ž
βˆ’98 𝑁 𝑠𝑖𝑛 60° = 10 π‘˜π‘” (π‘Ž)
π’Ž
π‘Ž = βˆ’πŸ–. πŸ’πŸ— 𝟐
𝒔
12. FX: 𝑇2 π‘π‘œπ‘  32° βˆ’ 𝑇1 π‘π‘œπ‘  32° = 0
𝑇2 (. 8480) βˆ’ 𝑇1 (. 8480) = 0
𝑇1 = 𝑇2
Fy: βˆ’π‘Š + 𝑇1 𝑠𝑖𝑛 32° + 𝑇2 𝑠𝑖𝑛 32° = 0
βˆ’110 𝑁 + 𝑇1 (. 5299) + 𝑇1 (. 5299) = 0
βˆ’110 𝑁 + 1.0598 𝑇1 = 0
1.0598 𝑇1 = 110 𝑁
𝑇1 = 𝑇2 = πŸπŸŽπŸ‘ . πŸ– 𝑡
13. 𝐹𝑁 βˆ’ π‘Š = π‘šπ‘Ž
π‘š
π‘š
𝑠
𝑠
𝐹𝑁 βˆ’ (100 π‘˜π‘”) (9.8 2 ) = (100 π‘˜π‘”) (5 2 )
𝐹𝑁 = πŸπŸ’πŸ–πŸŽ 𝑡
π‘š
)
𝑠2
y
𝐹𝑁
π‘Š = βˆ’686 𝑁
𝐹 = π‘šπ‘Ž
βˆ’200 𝑁 = 70 π‘˜π‘” (π‘Ž)
π‘Žπ‘ π‘˜π‘Žπ‘‘π‘’π‘Ÿ = βˆ’πŸ. πŸ–πŸ” π’Ž/π’”πŸ
π‘š
11. π‘Š = 10 π‘˜π‘” (9.8 2 ) = 98 𝑁
60°
𝜌𝐢𝐴
𝑔=
W
1
T
𝑀
π‘Ÿ2
π‘π‘š2
)(5.98×1024 π‘˜π‘”)
π‘˜π‘”2
6
(1×10 π‘š+6.36×106 π‘š)2
(6.67×10βˆ’11
= πŸ•. πŸ‘πŸ” π’Ž/π’”πŸ
20. 𝐹𝑛𝑒𝑑 = π‘šπ‘Ž
βˆ’20 𝑁 βˆ’ 10 𝑁 + 30 𝑁 + 5 𝑁 = (5 π‘˜π‘”)π‘Ž
π‘Ž = 1 π‘š/𝑠 2
since this is to the right Charlie and Dannie win
21. π‘˜π‘₯ βˆ’ π‘šπ‘” βˆ’ πΉπ‘ π‘ž = π‘šπ‘Ž = 0
π‘š
π‘˜(0.3 π‘š) βˆ’ (0.01 π‘˜π‘”) (9.8 2 ) βˆ’ 300 𝑁 = 0
𝑠
π‘˜ = 1000
Physics
Unit 3: Work, Energy, and Momentum
1.
2.
3.
4.
5.
6.
7.
8.
Meanings and concepts of terms like work, kinetic energy, gravitational potential energy, Conservation of
mechanical energy, work-energy theorem, conservative force, nonconservative, elastic and inelastic
collisions, impulse, momentum, isolated system, conserved
Know how force and time are related to collisions and impulse.
When is linear momentum and kinetic energy is conserved.
Mike is cutting the grass using a human-powered lawn mower. He pushes the mower with a force of 100
N directed at an angle of 20° below the horizontal direction. Calculate the work that Mike does on the
mower in pushing it 5 m across the yard.
The kinetic energy of a car is 7000 J as it travels along a horizontal road. How much work is required to
stop the car in 20 s?
A 15-kg block is lifted vertically 10 meters from the surface of the earth. To one significant figure, what is
the change in the gravitational potential energy of the block?
An engineer is asked to design a playground slide such that the speed a child reaches at the bottom does
not exceed 4.0 m/s. Determine the maximum height that the slide can be.
A ball of mass 5-kg is dropped from a height of 1.4
m (from the ground) onto a massless spring (the
spring has an equilibrium length of 0.5 m). The ball
compresses the spring by an amount of 0.29 m by
the time it comes to a stop. Calculate the spring
1.4 m
constant of the spring.
0.29 m
9.
10.
11.
12.
13.
14.
0.5 m
A warehouse worker uses a forklift to lift a crate of
pickles on a platform to a height 5 m above the
floor. The combined mass of the platform and the
crate is 100 kg. If the power expended by the forklift is 2000 W, how long does it take to lift the crate?
Jennifer is walking at 0.5 m/s. If Jennifer weighs 980 N, what is the magnitude of her momentum?
A 10.0-kg steel ball is dropped straight down onto a hard horizontal floor and bounces straight up. Its
speed just before and just after impact with the floor is 100 m/s. Determine the magnitude of the impulse
delivered to the floor by the steel ball.
A 5000-kg cannon at rest contains a 100-kg cannon ball. When fired, the cannon ball leaves the cannon
with a speed of 20 m/s. What is the recoil speed of the cannon?
A 2000-kg car traveling east at 50 m/s collides with a 500-kg car traveling west at 30 m/s. The cars stick
together after the collision. What is their common velocity after the collision?
A driver slams on the brakes of a 900-kg car going at 40 m/s so that the wheels lock. The road is sloping
upwards. If the car stops 20 m higher than it started, what is the work that friction did to stop the car?
4.
5.
6.
𝐹 = 100 𝑁 @20°, 𝑠 = 5 π‘š
π‘Š = 𝐹𝑠 π‘π‘œπ‘  πœƒ = (100 𝑁)(5 π‘š) π‘π‘œπ‘  20° =
πŸ’πŸ•πŸŽ 𝑱
𝐾𝐸0 = 7000 𝐽, 𝑑 = 20 𝑠
π‘Š = 𝐾𝐸𝑓 βˆ’ 𝐾𝐸0 = 0 βˆ’ 7000 𝐽 =
βˆ’πŸ•πŸŽπŸŽπŸŽ 𝑱
π‘š = 15 π‘˜π‘”, β„Ž = 10 π‘š
π‘š
1
2
1
π‘š 2
π‘š
𝑠
2
𝑠
𝑠
8
π‘š 2
𝑠
𝑠2
= 9.8
π‘š
𝑠2
β„Ž0
1
0 + π‘šπ‘”β„Ž0 = 0 + π‘šπ‘”β„Žπ‘“ + π‘˜π‘₯ 2
2
π‘š
(5 π‘˜π‘”) (9.8 2) (1.4 π‘š) =
𝑠
π‘š
1
𝑠
2
(5 π‘˜π‘”) (9.8 2) (0.21 π‘š) + π‘˜(0.29 π‘š)2
68.6 𝐽 = 10.29 𝐽 + (0.04205 π‘š2 )π‘˜
58.31 𝐽 = (0.04205 π‘š2 )π‘˜
π‘˜ = πŸπŸ‘πŸ–πŸ•
𝑡
π’Ž
β„Ž = 5 π‘š, π‘š = 100 π‘˜π‘”, 𝑃 = 2000 π‘Š
𝑑
=
𝐹𝑠
𝑑
=
π‘šπ‘Žπ‘ 
𝑑
π‘š
2000 π‘Š =
(100 π‘˜π‘”)(9.8 2 )(5 π‘š)
𝑠
𝑑
𝑑 = 𝟐. πŸ’πŸ“ 𝒔
π‘š
10. π‘Š = π‘šπ‘” β†’ 980 𝑁 = π‘š (9.8 2 ) β†’ π‘š =
𝑠
100 π‘˜π‘”
𝑝 = π‘šπ‘£
π‘š
𝑝 = (100 π‘˜π‘”) (0.5 ) = πŸ“πŸŽ π’Œπ’ˆ
𝑠
11. π‘š = 10 π‘˜π‘”, 𝑣0 = βˆ’100
π‘š
𝑠
π’Ž
𝒔
, 𝑣𝑓 = 100
π‘š
𝑠
𝐽 = 𝐹 β‹… 𝑑 = π‘šπ‘£π‘“ βˆ’ π‘šπ‘£0
𝐽=
π‘š
π‘š
𝑠
𝑠
(10 π‘˜π‘”) (100 ) βˆ’ (10 π‘˜π‘”) (βˆ’100 ) =
𝟐𝟎𝟎𝟎 𝑡𝒔
, 𝑣𝑓2 = ?
π‘š
π‘š
𝑠
𝑠
π‘š
𝑠
= 2500 π‘˜π‘” 𝑣𝑓
𝑣𝑓 = πŸ‘πŸ’ π’Ž/𝒔
0.29 π‘š = 0.21 π‘š, π‘₯ = 0.29 π‘š
𝐾𝐸0 + 𝑃𝐸0 = 𝐾𝐸𝑓 + 𝑃𝐸𝑓
π‘Š
𝑠
(2000 π‘˜π‘”) (50 ) + (500 π‘˜π‘”) (βˆ’30 ) =
85000 π‘˜π‘”
β„Ž0 = 𝟎. πŸ–πŸπŸ” π’Ž
π‘š = 5 π‘˜π‘”, β„Ž0 = 1.4 π‘š, β„Žπ‘“ = 0.5 π‘š βˆ’
𝑃=
, 𝑣𝑓1 = ?
𝑠
π‘š
(2000 π‘˜π‘”)𝑣𝑓 + (500 π‘˜π‘”)𝑣𝑓
(0 )
π‘š2
π‘š
π‘š1 𝑣01 + π‘š2 𝑣02 = π‘š1 𝑣𝑓1 + π‘š2 𝑣𝑓2
2
π‘š
(9.8 2 ) (0 π‘š) + (4 ) = (9.8 2 ) β„Ž0 +
2
𝒔
π‘š2 = 500 π‘˜π‘”, 𝑣02 = βˆ’30
1
𝑠
π’Ž
13. π‘š1 = 2000 π‘˜π‘”, 𝑣01 = 50
𝑠
π‘šπ‘”β„Žπ‘“ + π‘šπ‘£π‘“2 = π‘šπ‘”β„Ž0 + π‘šπ‘£02
1
𝑠
𝑠
π‘š
= (5000 π‘˜π‘”)𝑣𝑓𝑐
𝑣𝑓𝑐 = βˆ’πŸŽ. πŸ’πŸŽ
𝑃𝐸𝑓 + 𝐾𝐸𝑓 = 𝑃𝐸0 + 𝐾𝐸0
9.
π‘š
πŸπŸ’πŸ•πŸŽ 𝑱
𝑣𝑓 = 4
𝑠
(5000 π‘˜π‘”)𝑣𝑓𝑐 + (100 π‘˜π‘”) (20 )
βˆ’2000 π‘˜π‘”
π‘š
π‘š
π‘šπ‘ 𝑣0𝑐 + π‘šπ‘ 𝑣0𝑏 = π‘šπ‘ 𝑣𝑓𝑐 + π‘šπ‘ 𝑣𝑓𝑏
(5000 π‘˜π‘”)(0) + (100 π‘˜π‘”)(0) =
𝑃𝐸 = π‘šπ‘”β„Ž = (15 π‘˜π‘”) (9.8 2) (10 π‘š) =
𝑠
8.
π‘šπ‘ = 100 π‘˜π‘”, 𝑣0𝑏 = 0, 𝑣𝑓𝑏 = 20
0 = (5000 π‘˜π‘”)𝑣𝑓𝑐 + 2000 π‘˜π‘”
π‘š
7.
12. π‘šπ‘ = 5000 π‘˜π‘”, 𝑣0𝑐 = 0, 𝑣𝑓𝑐 = ?
14. 𝐸0 + π‘Šπ‘›π‘ = 𝐸𝑓
1
π‘šπ‘£02 + π‘Šπ‘›π‘ = π‘šπ‘”β„Žπ‘“
2
1
π‘š 2
(900 π‘˜π‘”) (40 ) + π‘Šπ‘›π‘
2
𝑠
π‘š
= (900 π‘˜π‘”) (9.8 2 ) (20 π‘š)
𝑠
720000 𝐽 + π‘Šπ‘›π‘ = 176400 𝐽
π‘Šπ‘›π‘ = βˆ’5.44 × 105 𝐽
Physics
Unit 5: Fluids
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Meanings and concepts of terms like fluid, density, barometer, Pascal’s principle, Bernoulli’s principle, Archimedes’
principle, continuity equation, pressure, buoyant force, gauge pressure, absolute pressure, Poiseuille’s Law, laminar flow,
turbulent flow, osmosis, dialysis, diffusion
The density of mercury is 1.36 × 104 kg/m3. What is the mass of a 10-m3 sample of mercury?
The average density of the material in intergalactic space is approximately 2.5 × 10βˆ’27 kg/m3. What is the volume of a
gold sample, ρ = 19300 kg/m3, that has the same mass as 5 × 1024 m3 of intergalactic space?
A barometer is taken from the base to the top of a 10-m tower. Assuming the density of air is 1.29 kg/m3, what is the
measured change in pressure?
How much force does the atmosphere exert on one side of a vertical wall 10-m high and 20-m long?
A force of 500 N is applied to a hydraulic jack piston that is 0.01 m in diameter. If the piston which supports the load has
a diameter of 2 m, approximately how much mass can be lifted by the jack? Ignore any difference in height between the
pistons.
A balloon inflated with helium gas (density = 0.2 kg/m3) has a volume of 5 m3. If the density of air is 1.3 kg/m3, what is
the buoyant force exerted on the balloon?
Water enters a pipe of diameter 10 cm with a velocity of 5 m/s. The water encounters a constriction where its velocity is
20 m/s. What is the diameter of the constricted portion of the pipe?
A large tank is filled with water to a depth of 17 m. A spout located 8 m above
the bottom of the tank is then opened as shown in the drawing. With what
speed will water emerge from the spout?
A small crack occurs at the base of a 10 .0-m-high dam. The effective crack
17
area through which water leaves is 1.30 × 10βˆ’3 m2. Ignoring viscous losses,
what is the speed of the water flowing through the crack?
8
Water flows through a pipe with radius 2 m and speed of 10 m/s. The density
βˆ’3
3
of water is 1000 kg/m and its viscosity is 1.002 × 10 Paβ€’s. Calculate the
Reynold’s number for this situation.
About how long will it take a perfume molecule to diffuse a distance of 2 m in
one direction in a room if the diffusion constant is 5 × 10βˆ’3 m2/s? Assume that the air is perfectly still.
The density of ice is 800 kg/m3; and the density of seawater is 900 kg/m3. A large iceberg floats in Arctic waters. What
fraction of the volume of the iceberg is exposed?
2.
3.
π‘˜π‘”
𝜌 = 1.36 × 104 3 , 𝑉 = 10 π‘š3
π‘š
π‘š
𝜌=
𝑉
π‘˜π‘”
π‘š
1.36 × 104 3 =
π‘š
10 π‘š3
πŸ“
π‘š = 𝟏. πŸ‘πŸ” × πŸπŸŽ π’Œπ’ˆ
πœŒπ‘ π‘π‘Žπ‘π‘’ = 2.5 × 10βˆ’27
π‘˜π‘”
π‘š3
9.
, πœŒπ‘”π‘œπ‘™π‘‘ =
19300 3 , π‘‰π‘ π‘π‘Žπ‘π‘’ = 5 × 1024 π‘š3
π‘š
π‘š
𝜌=
𝑉
π‘˜π‘”
π‘š
2.5 × 10βˆ’27 3 =
π‘š
5 × 1024 π‘š3
π‘š = 0.0125 π‘˜π‘”
π‘˜π‘” 0.0125 π‘˜π‘”
19300 3 =
π‘š
𝑉
𝑉 = πŸ”. πŸ’πŸ– × πŸπŸŽβˆ’πŸ• π’ŽπŸ‘
β„Ž = 10 π‘š, πœŒπ‘Žπ‘–π‘Ÿ = 1.29
2
π‘˜π‘”
π‘š3
𝑃 = β„ŽπœŒπ‘”
π‘˜π‘”
π‘š
) (9.8 2 ) = πŸπŸπŸ” 𝑷𝒂
π‘š3
𝑠
β„Ž = 10 π‘š, β„“ = 20 π‘š
𝐹
𝑃=
𝐴
𝐹
1.01 × 105 π‘ƒπ‘Ž =
(10 π‘š)(20 π‘š)
𝐹 = 𝟐. 𝟎𝟐 × πŸπŸŽπŸ• 𝑡
𝐹1 = 500 𝑁, 𝑑1 = 0.01 π‘š, 𝑑2 = 2 π‘š
𝐹1 𝐹2
=
𝐴1 𝐴2
500 𝑁
𝐹2
=
2
πœ‹(0.005 π‘š)
πœ‹(1 π‘š)2
7
𝐹2 = 2.0 × 10 𝑁
π‘Š = π‘šπ‘”
π‘Š 2.0 × 107 𝑁
π‘š=
=
= 𝟐. πŸŽπŸ’ × πŸπŸŽπŸ” π’Œπ’ˆ
𝑔
9.8 π‘š/𝑠 2
𝑃 = (10 π‘š) (1.29
5.
6.
7.
8.
πœŒπ»π‘’ = 0.2
π‘˜π‘”
π‘š3
, 𝑉 = 5 π‘š3 , πœŒπ‘Žπ‘–π‘Ÿ = 1.3
2
π‘˜π‘”
π‘š
1 π‘Žπ‘‘π‘š + 0 + (1000 3 ) (9.8 2 ) (10 π‘š)
π‘š
𝑠
1
π‘˜π‘”
= 1π‘Žπ‘‘π‘š + (1000 3 ) 𝑣22 + 0
2
π‘š
𝐽
π‘˜π‘” 2
98000 2 = 500 3 𝑣2
π‘š
π‘š
π‘š
𝑣2 = 14
𝑠
π‘š
π‘˜π‘”
11. π‘Ÿ = 2 π‘š, 𝑣 = 10 , 𝜌 = 1000 3 , πœ‚ = 1.002 ×
𝑠
π‘˜π‘”
π‘š
) (10 ) (2 π‘š)
𝑠
π‘š3
𝑁𝑅 =
βˆ’3
1.002 × 10 π‘ƒπ‘Ž β‹… 𝑠
𝑁𝑅 = πŸ‘. πŸ—πŸ— × πŸπŸŽπŸ•
2 (1000
12. π‘₯ = 2 π‘š, 𝐷 = 5 × 10βˆ’3
2 π‘š = √2 (5 × 10βˆ’3
4 π‘š2 = 10 × 10βˆ’3
𝐹𝐡 = π‘šπ‘Žπ‘–π‘Ÿ 𝑔
π‘š
𝜌=
𝑉
π‘˜π‘” π‘šπ‘Žπ‘–π‘Ÿ
1.3 3 =
π‘š
5 π‘š3
π‘šπ‘Žπ‘–π‘Ÿ = 6.5 π‘˜π‘”
𝑑 = πŸ’πŸŽπŸŽ 𝒔
13. πœŒπ‘–π‘π‘’ = 800
𝑠
π‘Ÿ2 = 0.025 π‘š
𝑑2 = 𝟎. πŸŽπŸ“ π’Ž
𝑠
π‘˜π‘”
π‘š3
π‘š2
)𝑑
𝑠
π‘š2
⋅𝑑
𝑠
, 𝜌 = 900
π‘˜π‘”
π‘š3
πΉπ‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘› π‘ π‘’π‘π‘šπ‘’π‘Ÿπ‘”π‘’π‘‘ =
π‘š
𝐹𝐡 = (6.5 π‘˜π‘”) (9.8 2 ) = πŸ”πŸ‘. πŸ• 𝑡
𝑠
π‘š
π‘š
𝑑1 = 10 π‘π‘š, 𝑣1 = 5 , 𝑣2 = 20
(πœ‹(0.05 π‘š)2 ) (5
π‘š2
π‘₯π‘Ÿπ‘šπ‘  = √2𝐷𝑑
π‘˜π‘”
π‘š3
π‘š
10βˆ’3 π‘ƒπ‘Ž β‹… 𝑠
2πœŒπ‘£ π‘Ÿ
𝑁𝑅 =
πœ‚
𝐹𝐡 = 𝑀𝑓𝑙
𝐴1 𝑣1 = 𝐴2 𝑣2
π‘˜π‘”
π‘š3
1
1
𝑃1 + πœŒπ‘£12 + πœŒπ‘”β„Ž1 = 𝑃2 + πœŒπ‘£22 + πœŒπ‘”β„Ž2
2
2
π‘˜π‘”
π‘š
1 π‘Žπ‘‘π‘š + 0 + (1000 3 ) (9.8 2 ) (17 π‘š)
π‘š
𝑠
1
π‘˜π‘”
= 1 π‘Žπ‘‘π‘š + (1000 3 ) 𝑣22
2
π‘š
π‘˜π‘”
π‘š
+ (1000 3 ) (9.8 2 ) (8 π‘š)
π‘š
𝑠
𝑁
π‘˜π‘” 2
𝑁
166600 2 = (500 3 ) 𝑣2 + 78400 2
π‘š
π‘š
π‘š
𝑁
π‘˜π‘”
88200 2 = (500 2 ) 𝑣22
π‘š
π‘š
π’Ž
𝑣2 = πŸπŸ‘. πŸ‘
𝒔
1
1
2
10. 𝑃1 + πœŒπ‘£1 + πœŒπ‘”β„Ž1 = 𝑃2 + πœŒπ‘£22 + πœŒπ‘”β„Ž2
π‘˜π‘”
4.
β„Ž1 = 17 π‘š, β„Ž2 = 8 π‘š, 𝜌 = 1000
𝑠
π‘š
π‘š
) = (πœ‹π‘Ÿ22 ) (20 )
𝑠
𝑠
πœŒπ‘œπ‘π‘—
πœŒπ‘“π‘™
π‘˜π‘”
3
π‘š
πΉπ‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘› π‘ π‘’π‘π‘šπ‘’π‘Ÿπ‘”π‘’π‘‘ =
π‘˜π‘”
900 3
π‘š
8
πΉπ‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘› π‘ π‘’π‘π‘šπ‘’π‘Ÿπ‘”π‘’π‘‘ = = 88.9 %
9
πΉπ‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘› 𝑒π‘₯π‘π‘œπ‘ π‘’π‘‘ = 1 βˆ’ πΉπ‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘› π‘ π‘’π‘π‘šπ‘’π‘Ÿπ‘”π‘’π‘‘
8
πΉπ‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘› 𝑒π‘₯π‘π‘œπ‘ π‘’π‘‘ = 1 βˆ’
9
𝟏
πΉπ‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘› 𝑒π‘₯π‘π‘œπ‘ π‘’π‘‘ = = 𝟏𝟏. 𝟏 %
πŸ—
800
Physics
Unit 6: Temperature, Heat, and Thermodynamics
1.
Meanings and concepts of terms like thermal expansion, equilibrium, condensation, evaporation, sublimation, freezing,
melting, humidity, heat, calorimeter, convection, conduction, radiation, blackbody radiator, thermodynamics, heat
engine, heat pump, Carnot engine, entropy
2. The coefficient of linear expansion of aluminum is 2.3 × 10βˆ’6 /C°. A circular hole in an aluminum plate is 10
cm in diameter at 10 °C. What is the diameter of the hole if the temperature of the plate is raised to 100 °C?
3. A sample of a monatomic ideal gas is originally at 20 °C. What is the final temperature of the gas if both the
pressure and volume are quadrupled?
4. Late on an autumn day, the relative humidity is 60% and the temperature in 30 °C. What will the relative
humidity be that evening when the temperature has dropped to 10 °C, assuming constant water vapor
density?
5. A 5-kg lead shot is heated to 200 °C and dropped into an ideal calorimeter containing 10 kg of water initially
at 20.0 °C. What is the final equilibrium temperature of the lead shot? The specific heat capacity of lead is 128
J/(kg·C°); and the specific heat of water is 4186 J/(kg·C°).
6. What is the minimum amount of energy required to completely melt a 5-kg lead brick which has a starting
temperature of 20 °C? The melting point of lead is 328 °C. The specific heat capacity of lead is 128 J/(kg·C°);
and its latent heat of fusion is 23200 J/kg.
7. A blue supergiant star has a radius of 5×1010 m. The spherical surface behaves as a blackbody radiator. If the
surface temperature is 5×104 K, what is the rate at which energy is radiated from the star?
8. At what rate is heat lost through a 5 m × 10 m rectangular glass windowpane that is 0.5 cm thick when the
inside temperature is 20 °C and the outside temperature -5 °C? The thermal conductivity for glass is 0.80
W/(m·C°).
9. A system containing an ideal gas at a constant pressure of 5×105 Pa gains 100 J of heat. During the process,
the internal energy of the system increases by 500 J. What is the change in volume of the gas?
10. An engine is used to lift a 5000 kg truck to a height of 2 m at constant speed. In the lifting process, the engine
received 5×105 J of heat from the fuel burned in its interior. What is the efficiency of the engine?
11. A Carnot heat engine is to be designed with an efficiency of 60%. If the low temperature reservoir is 20 °C,
what is the temperature of the β€œhot” reservoir?
12. If the coefficient of performance for a refrigerator is 6 and 1000 J of work are done on the system, how much
heat is rejected to the room?
13. A 20-kg sample of steam at 100.0 °C condenses to water at 100.0 °C. What is the entropy change of the sample
if the heat of vaporization of water is 2.26×106 J/kg?
2.
3.
4.
5.
𝛼 = 2.3 × 10βˆ’6 /C°, 𝑑1 = 0.05 π‘š, 𝑇1 = 10 °πΆ, 𝑇2 = 100 °πΆ
π›₯𝐿 = 𝛼𝐿π›₯𝑇
π›₯𝐿 = (2.3 × 10βˆ’6 /C°)(0.05 π‘š)(100 °πΆ βˆ’ 10 °πΆ)
π›₯𝐿 = 1.04 × 10βˆ’5 π‘š
𝑑2 = 0.05 π‘š + 1.04 × 10βˆ’5 π‘š = πŸ“. 𝟎𝟎𝟏 × πŸπŸŽβˆ’πŸ π’Ž
𝑇1 = 20 °πΆ, 𝑃2 = 4𝑃1 , 𝑉2 = 4𝑉1
𝑃𝑉 = 𝑛𝑅𝑇
𝑃𝑉
= 𝑛𝑅
𝑇
𝑠𝑖𝑛𝑐𝑒 𝑛𝑅 𝑖𝑠 π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
𝑃1 𝑉1 𝑃2 𝑉2
=
𝑇1
𝑇2
(4𝑃1 )(4𝑉1 )
𝑃1 𝑉1
=
20 °πΆ
𝑇2
1
16
=
20 °πΆ 𝑇2
𝑇2 = πŸ‘πŸπŸŽ °π‘ͺ
% β„Žπ‘’π‘š1 = 60 %, 𝑇1 = 30 °πΆ, 𝑇2 = 10 °πΆ
% π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ β„Žπ‘’π‘šπ‘–π‘‘π‘–π‘‘π‘¦
π‘£π‘Žπ‘π‘œπ‘Ÿ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦
=
× 100%
π‘ π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› π‘£π‘Žπ‘π‘œπ‘Ÿ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦
π‘£π‘Žπ‘π‘œπ‘Ÿ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦
60 % =
× 100%
𝑔
30.4 3
π‘š
𝑔
π‘£π‘Žπ‘π‘œπ‘Ÿ 𝑑𝑒𝑛𝑠𝑑𝑖𝑦 = 18.24 3
π‘š
𝑔
18.24 3
π‘š
% β„Žπ‘’π‘šπ‘–π‘‘ =
𝑔 × 100%
9.4 3
π‘š
% β„Žπ‘’π‘šπ‘–π‘‘π‘–π‘‘π‘¦ = πŸπŸ—πŸ’ %
This can't really happen. It started raining and the
humidity stayed at 100%.
π‘šπ‘™ = 5 π‘˜π‘”, 𝑇𝑙 = 200 °πΆ, π‘šπ‘€ = 10 π‘˜π‘”, 𝑇𝑀 = 20°πΆ, 𝑐𝑙 =
128
𝐽
π‘˜π‘”β‹…πΆ°
, 𝑐𝑀 = 4186
𝑄 = π‘šπ‘π›₯𝑇
𝑄𝑙 = βˆ’π‘„π‘€
(5 π‘˜π‘”) (128
𝐽
π‘˜π‘”β‹…πΆ°
𝐽
) (𝑇𝑓 βˆ’ 200°πΆ)
π‘˜π‘” β‹… 𝐢°
= βˆ’(10 π‘˜π‘”) (4186
𝐽
) (𝑇𝑓 βˆ’ 20 °πΆ)
π‘˜π‘” β‹… 𝐢°
𝐽
𝐽
𝑇 βˆ’ 128000 𝐽 = βˆ’41860 𝑇𝑓 + 837200 𝐽
𝐢° 𝑓
𝐢°
𝐽
42500 𝑇𝑓 = 965200 𝐽
𝐢°
𝑇𝑓 = 𝟐𝟐. πŸ• °π‘ͺ
640
6.
π‘š = 5 π‘˜π‘”, 𝑇0 = 20 °πΆ, π‘‡π‘šπ‘’π‘™π‘‘ = 328 °πΆ, 𝑐 =
128
𝐽
π‘˜π‘”β‹…πΆ°
, 𝐿𝑓 = 23200
𝐽
π‘˜π‘”
𝑄 = π‘šπ‘π›₯𝑇
𝑄 = (5 π‘˜π‘”) (128
𝑄 = 197120 𝐽
π‘„π‘šπ‘’π‘™π‘‘ = π‘šπΏπ‘“
𝐽
) (328 °πΆ βˆ’ 20 °πΆ)
π‘˜π‘” β‹… 𝐢°
𝐽
) = 116000 𝐽
π‘˜π‘”
π‘„π‘‘π‘œπ‘‘ = 197120 𝐽 + 116000 𝐽 = πŸ‘πŸπŸ‘πŸπŸπŸŽ 𝑱
π‘Ÿ = 5 × 1010 π‘š, 𝑇 = 5 × 104 𝐾, 𝑒 = 1
𝑄
= πœŽπ‘’π΄π‘‡ 4
𝑑
𝑄
𝐽
= (5.67 × 10βˆ’8
) (1)(4πœ‹(5 × 1010 π‘š)2 )(5
𝑑
𝑠 β‹… π‘š2 β‹… 𝐾 4
× 104 𝐾)4
𝑄
𝑱
= 𝟏. 𝟏𝟏 × πŸπŸŽπŸ‘πŸ’
𝑑
𝒔
𝐴 = (5 π‘š)(10 π‘š) = 50 π‘š2 , 𝑑 = 0.005 π‘š, 𝑇2 =
π‘„π‘šπ‘’π‘™π‘‘ = (5 π‘˜π‘”) (23200
7.
8.
βˆ’5 °πΆ, 𝑇1 = 20 °πΆ, π‘˜ = 0.80
π‘Š
π‘šβ‹…πΆ°
𝑄 π‘˜π΄(𝑇2 βˆ’ 𝑇1 )
=
𝑑
𝑑
π‘Š
2
𝑄 (0.80 π‘š β‹… 𝐢°) (50 π‘š )(βˆ’5 °πΆ βˆ’ 20 °πΆ)
=
𝑑
0.005 π‘š
𝑄
𝑱
= βˆ’πŸπŸŽπŸŽπŸŽπŸŽπŸŽ
𝑑
𝒔
9. 𝑃 = 5 × 105 π‘ƒπ‘Ž, 𝑄 = 100 𝐽, π›₯π‘ˆ = 500 𝐽
π›₯π‘ˆ = 𝑄 βˆ’ π‘Š
500 𝐽 = 100 𝐽 βˆ’ π‘Š
π‘Š = βˆ’600 𝐽
π‘Š = 𝑃π›₯𝑉 (π‘–π‘ π‘œπ‘π‘Žπ‘Ÿπ‘–π‘ π‘π‘Ÿπ‘œπ‘π‘’π‘ π‘ )
βˆ’600 𝐽 = (5 × 105 π‘ƒπ‘Ž)π›₯𝑉
π›₯𝑉 = βˆ’πŸŽ. 𝟎𝟎𝟏𝟐 π’ŽπŸ‘
10. π‘š = 5000 π‘˜π‘”, β„Ž = 2 π‘š, 𝑄 = 5 × 105 𝐽
π‘Š
𝐸𝑓𝑓 =
π‘„β„Ž
π‘š
(5000 π‘˜π‘”) (9.8 2 ) (2 π‘š)
𝑠
𝐸𝑓𝑓 =
= 𝟎. πŸπŸ—πŸ”
5 × 105 𝐽
11. 𝐸𝑓𝑓𝐢 = 0.60, 𝑇𝑐 = 20 °πΆ
𝑇𝑐
𝐸𝑓𝑓𝐢 = 1 βˆ’
π‘‡β„Ž
20 °πΆ
0.60 = 1 βˆ’
π‘‡β„Ž
20°πΆ
βˆ’0.40 = βˆ’
π‘‡β„Ž
20 °πΆ
π‘‡β„Ž =
= βˆ’πŸ“πŸŽ °π‘ͺ
βˆ’0.40
12. πΆπ‘‚π‘ƒπ‘Ÿπ‘’π‘“ = 6, π‘Š = 1000 𝐽
𝑄𝑐
πΆπ‘‚π‘ƒπ‘Ÿπ‘’π‘“ =
π‘Š
𝑄𝑐
6=
1000 𝐽
𝑄𝑐 = πŸ”πŸŽπŸŽπŸŽ 𝑱
13. π‘š = 20 π‘˜π‘”, 𝑇 = 100 °πΆ, 𝐿𝑣 = 2.26 × 106
π›₯𝑆 =
𝑄
𝑇
(20 π‘˜π‘”) (2.26 × 106
π›₯𝑆 =
100 °πΆ
𝐽
)
π‘˜π‘”
𝐽
π‘˜π‘”
= πŸ’πŸ“πŸπŸŽπŸŽπŸŽ
𝑱
𝑲