Download Final Review - CMS

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Trigonometric functions wikipedia , lookup

Transcript
Math 140
Trigonometry 11th edition Lial, Hornsby, Schneider, and Daniels
Practice Final
(Ch. 1-8)
PART I: NO CALCULATOR (144 points)
(4.1, 4.2, 4.3, 4.4)
For the following functions:
a) Find the amplitude, the period, any vertical translation, and any phase shift.
If not applicable, write “none” in the blank.
b) Graph over the interval −2π ≤ x ≤ 2π . Identify and label any asymptotes.
1
3π 

1.
2.
y = 4sin x
y=
−2cos  x +

2
4 

amplitude:
amplitude:
period:
period:
vertical translation:
vertical translation:
phase shift:
phase shift:
−2π
:
4
4
2
2
−π
π
−2π
2π
−π
−2
−2
−4
−4
π

3. =
y tan  x − 
4

4.
amplitude:
period:
period:
vertical translation:
vertical translation:
phase shift:
phase shift:
4
4
2
2
−π
π
2π
2π
π
2π
y = csc x
amplitude:
−2π
π
−2π
−π
−2
−2
−4
−4
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
(4.1, 4.2, 4.3, 4.4)
For the following functions:
a) Find the amplitude, the period, any vertical translation, and any phase shift.
If not applicable, write “none” in the blank.
b) Graph over the interval −2π ≤ x ≤ 2π . Identify and label any asymptotes.
1
5.
6.
y= 2 − sec x
y = cot x
2
amplitude:
amplitude:
period:
period:
vertical translation:
vertical translation:
phase shift:
phase shift:
−2π
4
4
2
2
−π
π
−2π
2π
−π
π
−2
−2
−4
−4
(6.1)
Give the exact radian measure of y if it exists.
(
7.=
y arctan − 3
)

2
=
y arcsin  −
10.

 2 

3
y cos −1  −
8. =

 2 
11.
 2
y = csc −1 

 2 
9.
y = sec −1 ( 2 )
y cot −1 ( −1)
12. =
Write the following trigonometric expression as an algebraic expression in u, for u > 0 .
13. cot sec −1 u
14. cos ( arcsin u )
(
)
2
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
2π
Math 140 Practice Final (cont.)
PART II: YOU MAY USE A CALCULATOR (256 points)
DOUBLE-ANGLE IDENTITIES
sin 2 A = 2sin A cos A
cos
=
2 A cos 2 A − sin 2 A
tan 2 A =
2 tan A
1 − tan 2 A
=
cos 2 A 2cos 2 A − 1
cos 2 A = 1 − 2sin 2 A
SUM AND DIFFERENCE IDENTITIES
HALF-ANGLE IDENTITIES
sin( A
=
+ B) sin A cos B + cos A sin B
sin( A − B) = sin A cos B − cos A sin B
sin
A
1 − cos A
= ±
2
2
cos
A
1 + cos A
= ±
2
2
cos( A + B) = cos A cos B − sin A sin B
cos( A − B) = cos A cos B + sin A sin B
tan A + tan B
1 − tan A tan B
tan A − tan B
tan( A − B) =
1 + tan A tan B
tan( A + B) =
tan
A
sin A
=
2 1 + cos A
tan
A 1 − cos A
=
2
sin A
tan
LAW OF COSINES
a 2 = b 2 + c 2 − 2bc cos A
A
1 − cos A
= ±
2
1 + cos A
b 2 = a 2 + c 2 − 2ac cos B
DE MOIVRE’S THEOREM
c 2 = a 2 + b 2 − 2ab cos C
 r ( cos θ + i sin θ )  = r n ( cos nθ + i sin nθ )
where r ( cos θ + i sin θ ) is a complex
number and n is any real number.
n
LAW OF SINES
a
b
c
= =
sin A sin B sin C
sin A sin B sin C
= =
a
b
c
3
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
(1.1)
1.
Convert the following angles to decimal degrees. If applicable, round to the nearest hundredth of
a degree.
a) 76  48'
b) 34  51'35''
c) 249 15'
(1.4)
2.
Identify the quadrant satisfying the given conditions:
a) cos θ < 0 and cot θ > 0
b) tan θ < 0 and cscθ > 0
(2.1, 2.2)
3.
Find the exact values of the six trigonometric functions for the given angles.
Rationalize denominators when applicable.
a) 135 
b) 210 
c) 270 
d) 300 
(5.5)
4.
Given cos 2 x = −
5
and 90° < x < 180° , find the exact values of the following.
12
sin x =
cos x =
tan x =
5.
Given csc x = −
7 5
and cos x > 0 , find the exact values of the following.
5
sin 2x =
cos 2x =
tan 2x =
(2.5)
6.
Find h as indicated in the figure.
h
41.2 
52.5 
168 m
4
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
(7.3)
Solve the following problem. Include a labeled sketch in your work.
7.
Starting at point A, a ship sails 18.2 km on a bearing of 190 , then turns and sails 47.4 km on a
bearing of 319 . Find the distance of the ship from point A to the nearest tenth of a kilometer.
(7.1)
Solve the following problem. Include a labeled sketch in your work.
8.
Francesco is flying in a hot air balloon directly above a straight road 3.4 mi long that joins two
towns. He finds that the town closer to him is at an angle of depression of 52.9 , and the farther
town is at an angle of depression of 28.5 . How high above the ground is the balloon?
Round your answer to the nearest hundredth of a mile.
(5.6)
9.
Use the appropriate half-angle identity to find the exact value of the following.
Work demonstrating use of appropriate identity must be shown.
a) sin 202.5°
b) tan 75°
(5.3, 5.4)
10. Use the appropriate sum or difference identity to find the exact value of the following.
Work demonstrating use of appropriate identity must be shown.
13π
5π
π
a) cos
b) tan
c) sin
12
12
12
(3.1)
11. Convert the following angles to radians. Leave answers as multiples of π .
a) 110 
b) 216 
(3.1)
12. Convert the following angles to degrees.
4π
a) −
15
b)
8π
5
5
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
(5.1, 5.2, 5.5)
Verify that each equation is an identity.
sinθ + tan θ
13.
= tan θ
1 + cos θ
15.
cos 2θ
cot θ − tan θ =
sin θ cos θ
14.
2
sec 2 θ csc
=
θ sec 2 θ + csc 2 θ
16.
tan 8θ − tan 8θ tan 2 4θ =
2 tan 4θ
(6.2)
17. Solve the following equations for all exact solutions in radians.
Write answers using the least possible nonnegative angle measures.
0
a) 2sin x − 3 =
b) cos x + 1 =2sin 2 x
(6.3)
18. Solve the following for all solutions in degrees. Use exact values for x whenever possible.
If necessary, approximate answers to the nearest tenth of a degree.
Write answers using the least possible nonnegative angle measures.
a) 3cot 3 x = 3
b) 2 − sin 2 x =
4sin 2 x
(6.2, 6.3)
19. Solve the following equation over the interval 0  , 360  Use exact values for x whenever
possible. If necessary, approximate answers to the nearest tenth of a degree.
40
a) 5 tan 2 x + 16 tan x =
b) 5sec 2 x= 3 + 3sec x
c) 2sin 2 x = 1
)
(8.4)
20.
(
)
6
Use DeMoivre’s Theorem to find 2 − 2i 3 . Write your answer in rectangular form.
(8.5)
21. Convert the following to polar coordinates with 0° ≤ θ < 360° and r > 0 .
a)
( −1, 3 )
b)
(
2, − 2
)
6
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
(8.6)
22. A golf ball is hit from the ground with initial velocity of 150 feet per second at an
angle of 60° with the ground.
x = 75 t
The parametric equations that model the path of the rocket are given by
−16t 2 + 75 3 t
y=
Determine a rectangular equation that models the path of the projectile.
Use exact values for any numbers in the equation.
7
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
Part I Answers:
1)
a) amplitude: 4
period:
4π
vertical translation: none
phase shift: none
b)
2)
a) amplitude: 2
period:
2π
vertical translation: none
phase shift:
3π
left
4
b)
8
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
Part I Answers:
3)
a) amplitude: none
period:
vertical translation: none
π
phase shift:
π
4
right
b)
asymptotes:
x= −
5π
4
x= −
π
4
x=
3π
4
x=
7π
4
4)
a) amplitude: none
period:
2π
vertical translation: none
phase shift: none
b)
asymptotes:
x = −2π
x = −π
x =π
x=0
x = 2π
9
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
Part I Answers:
5)
vertical translation: 2 up
a) amplitude: none
period:
2π
phase shift: none
b)
asymptotes:
x= −
3π
2
x= −
π
2
x=
π
2
x=
3π
2
6)
a) amplitude: none
period:
2π
vertical translation: none
phase shift: none
b)
asymptotes:
x = −2π
x = 2π
x=0
10
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
Part I Answers:
π
7)
−
8)
5π
6
9)
does not exist
10)
−
11)
does not exist
12)
−
3
π
4
π
4
13)
u2 −1
u2 −1
14)
1− u2
11
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
Part II Answers:
1)
a) 78.8 
b) 34.86 
2)
a) III
b) II
3a)
sin135 =
2
2
c) 249.25 
cos135 = −
csc135 = 2
2
2
sec135 = − 2
1
2
cos 210 = −
3
2
csc 210 = −2
sec 210 = −
2 3
3
3c)
sin 270 = −1
cos 270 = 0
3d)
sin 300 = −
3
2
cos 300 =
csc 300 = −
2 3
3
sec 300 = 2
3b)
4)
sin 210 = −
sin x =
102
12
cos x = −
1
2
42
12
12
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
tan135 = −1
cot135 = 1
tan 210 =
3
3
cot 210 = 3
tan 300 = − 3
cot 300 = −
tan x =
119
7
3
3
Math 140 Practice Final (cont.)
Part II Answers:
5)
sin 2 x = −
6)
448 m
7)
38.6 km
8)
1.31 miles
9)
a) −
10)
a)
11)
a)
12)
a) −48
4 55
49
2− 2
2
6− 2
4
11π
18
cos 2 x =
39
49
tan 2 x =
−4 55
39
b) −2 − 3
b) 2 − 3
b)
6π
5
b) 288
13
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
c)
6− 2
4
Math 140 Practice Final (cont.)
Part II Answers:
13)
One possible way of verifying
sin θ + tan θ
= tan θ :
1 + cos θ
sin θ + tan θ
1 + cos θ
sin θ
sin θ +
cos θ
=
1 + cos θ
1 

sin θ 1 +

cos θ 

=
1 + cos θ
1 
 cos θ
+
sin θ 

 cos θ cos θ 
=
1 + cos θ
 cos θ + 1 
sin θ 

 cos θ 
=
1 + cos θ
sin θ
( cos θ + 1)
θ
cos
=
1 + cos θ
= tan θ
14)
One possible way of verifying
2
sec 2 θ csc
=
θ sec 2 θ + csc 2 θ :
sec 2 θ + csc 2 θ
=
1
1
+ 2
2
cos θ sin θ
sin 2 θ + cos 2 θ
=
sin 2 θ cos 2 θ
1
=
2
sin θ cos 2 θ
= sec 2 θ csc 2 θ
14
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
Part II Answers:
15) One possible way of verifying
cos 2θ
:
cot θ − tan θ =
sin θ cos θ
cos 2θ
sin θ cos θ
cos 2 θ − sin 2 θ
=
sin θ cos θ
cos 2 θ
sin 2 θ
=
−
sin θ cos θ sin θ cos θ
cos θ ⋅ cos θ sin θ ⋅ sin θ
=
−
sin θ cos θ
sin θ cos θ
= cot θ − tan θ
16) One possible way of verifying
tan 8θ − tan 8θ tan 2 4θ =
2 tan 4θ :
tan 8θ − tan 8θ tan 2 4θ
= tan 8θ (1 − tan 2 4θ )
= tan 2 ( 4θ ) (1 − tan 2 4θ )
=
2 tan 4θ
(1 − tan
1 − tan 2 4θ
= 2 tan 4θ
2
4θ )
1
15
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.
Math 140 Practice Final (cont.)
Part II Answers:
π
π + 2 kπ
π
b) + 2kπ
+ 2 kπ
3
2π
+ 2kπ , where k is an integer
3
17)
a)
18)
a) 20 + 60 k , where k is an integer
19)
a) 58.8 , 101.7 , 238.8 , 281.7
3
5π
+ 2kπ , where k is an integer
3
b)
11.8 + 180 k
78.2 + 180 k , where k is an integer
b) 27.8 , 332.2
c) 45 , 135 , 225 , 315
20)
4096 or 4096 + 0i
21)
a)
22)
16 2
y=
−
x + 3x
5625
( 2, 120 )

b)
( 2, 315 )

16
©Cerritos College MLC
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.