Download Notes - Humble ISD

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

History of trigonometry wikipedia , lookup

Addition wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Transcript
Trigonometric Form
of Complex Numbers
Unit 8: Section 6.5, Page 440-449
Warm up
β€’ Convert the following polar coordinates to rectangular
β€’ (4,
7πœ‹
)
6
β€’ Convert the following rectangular coordinates to polar
β€’ (2,-3)
β€’ Hint: Radians!!!
The Complex Plane
β€’ The complex plane is very similar to the x-y plane
β€’ Complex number z = x + iy
β€’ X-axis = real part
β€’ Y-axis = imaginary part
β€’ Complex numbers can also be
written using trigonometry.
Trig Form of Complex Nos.
β€’ z = x + iy
β€’ 𝒛 = 𝒓 𝒄𝒐𝒔 𝜽 + π’Š π’”π’Šπ’ 𝜽
β€’ π‘Ÿ=
π‘₯ 2 + 𝑦 2 tan πœƒ =
β€’ x = r cos ΞΈ
𝑦
π‘₯
y = r sin ΞΈ
β€’ Does this look familiar??? It’s similar to converting between
rectangular and polar coordinates!
β€’ Why?? The trig form makes it much easier to work with powers
and roots of a complex number
Converting: Complex to Trig
β€’ π‘Ÿ=
π‘₯ 2 + 𝑦 2 tan πœƒ =
𝑦
π‘₯
x = r cos ΞΈ
β€’ Convert z = 6 - 6i to trig form
β€’ π‘Ÿ = 62 + 62 = 2 βˆ— 36 = 6 2
β€’ (6, -6) is in the 3rd Quadrant!
6
6
β€’ tan πœƒβ€² = = 1
β€’ πœƒβ€² =
πœ‹
4
πœ‹
4
πœƒ=πœ‹+ =
β€’ 𝑧 = 6 2 cos
7πœ‹
4
+ 𝑖 sin
7πœ‹
4
7πœ‹
4
or z = 6 2 𝑐𝑖𝑠
7πœ‹
4
y = r sin ΞΈ
Converting: Trig to Complex
β€’ π‘Ÿ=
π‘₯ 2 + 𝑦 2 tan πœƒ =
β€’ Convert 𝑧 = 3 cos
3πœ‹
=3
2
3πœ‹
3 sin = 3
2
3πœ‹
2
𝑦
π‘₯
+ 𝑖 sin
β€’ π‘₯ = 3 cos
0 =0
β€’ 𝑦=
βˆ’1 = βˆ’3
β€’ z = (0, -3)
x = r cos ΞΈ
3πœ‹
2
to complex.
y = r sin ΞΈ
Complex Numbers in Trig Form
Multiplying & Dividing
β€’ 𝑧1 𝑧2 = π‘Ÿ1 π‘Ÿ2 cos πœƒ1 +πœƒ2 + i sin πœƒ1 + πœƒ2
β€’
𝑧1
𝑧2
=
π‘Ÿ1
π‘Ÿ2
cos πœƒ1 βˆ’ πœƒ2 + 𝑖 sin πœƒ1 βˆ’ πœƒ2
β€’ Example: Find
β€’ 𝑧1 𝑧2 =
3
4
3
4
𝑐𝑖𝑠
4 cos
β€’ 𝑧1 𝑧2 = 3 𝑐𝑖𝑠
13πœ‹
12
πœ‹
3
πœ‹
3
+
4 𝑐𝑖𝑠
3πœ‹
4
3πœ‹
4
+ i sin
πœ‹
3
+
3πœ‹
4
Complex Numbers in Trig Form
Multiplying & Dividing (cont.)
β€’ 𝑧1 𝑧2 = π‘Ÿ1 π‘Ÿ2 cos πœƒ1 +πœƒ2 + i sin πœƒ1 + πœƒ2
β€’
𝑧1
𝑧2
=
π‘Ÿ1
π‘Ÿ2
cos πœƒ1 βˆ’ πœƒ2 + 𝑖 sin πœƒ1 βˆ’ πœƒ2
β€’ Example: Find
24
8
24 𝑐𝑖𝑠 300°
8 𝑐𝑖𝑠 75°
β€’
𝑧1
𝑧2
=
β€’
𝑧1
𝑧2
= 3 cos 225 + 𝑖 sin 225
cos 300 βˆ’ 75 + 𝑖 sin 300 βˆ’ 75
=3
βˆ’ 2
βˆ’
2
𝑖
2
2
DeMoivre’s Theorem