* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture 07
Survey
Document related concepts
Transcript
ECE 546 Lecture - 07 Nonideal Conductors and Dielectrics Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 546 – Jose Schutt-Aine 1 Material Medium H E t E j H or E H J t H J j E J sE s: conductivity of material medium (W-1m-1) s H s E j E E s j j 1 E j s since 1 j then s E 1 E j 2 ECE 546 – Jose Schutt-Aine 2 2 Wave in Material Medium s 2 E 1 E E j s 2 2 1 j 2 2 is complex propagation constant s j 1 j j : associated with attenuation of wave : associated with propagation of wave ECE 546 – Jose Schutt-Aine 3 Wave in Material Medium ˆ o e z xE ˆ o e z e j z decaying exponential Solution: E xE 2 2 1/2 s 1 1 2 1/2 s 1 1 2 Magnetic field H yˆ Eo Complex intrinsic impedance j s j e z e j z ECE 546 – Jose Schutt-Aine 4 Skin Depth ˆ o e z xE ˆ o e z e j z Wave decay E xE The decay of electromagnetic wave propagating into a conductor is measured in terms of the skin depth Definition: skin depth is distance over which amplitude of wave drops by 1/e. 1 For good conductors: 2 s ECE 546 – Jose Schutt-Aine 5 Skin Depth e-1 Wave motion I V C z t For perfect conductor, = 0 and current only flows on the surface ECE 546 – Jose Schutt-Aine 6 DC Resistance l Rdc s wt l: conductor length s: conductivity ECE 546 – Jose Schutt-Aine 7 AC Resistance l l l f Rac s w s w 2 / s w s l: conductor length s: conductivity f: frequency ECE 546 – Jose Schutt-Aine 8 Frequency-Dependent Resistance J 1 J e 0 z dz J J Approximation is to assume that all the current is flowing uniformly within a skin depth ECE 546 – Jose Schutt-Aine 9 Frequency-Dependent Resistance Resistance changes2with 2 f I I CL 2 2 z t 1 f Rac w s 1 Rdc s wt Resistance is ~ constant when >t ECE 546 – Jose Schutt-Aine 10 Reference Plane Current Rac , ground l f 6h s ECE 546 – Jose Schutt-Aine 11 Skin Effect in Microstrip r H. A. Wheeler, "Formulas for the skin effect," Proc. IRE, vol. 30, pp. 412-424,1942 ECE 546 – Jose Schutt-Aine 12 Skin Effect in Microstrip Current density varies as J J o e y / e jy / Note that the phase of the current density varies as a function of y J o w I J o we e dy 1 j 0 Jo s Eo J o Eo y / jy / s The voltage measured over a section of conductor of length D is: V Eo D Jo D s ECE 546 – Jose Schutt-Aine 13 Skin Effect in Microstrip The skin effect impedance is Z skin V J o D 1 j D 1 j f I s J o w w where 1 s is the bulk resistivity of the conductor Z skin Rskin jX skin with Rskin X skin D f s w Skin effect has reactive (inductive) component ECE 546 – Jose Schutt-Aine 14 Internal Inductance The internal inductance can be calculated directly from the ac resistance Linternal Rac Rskin Skin effect resistance goes up with frequency Skin effect inductance goes down with frequency ECE 546 – Jose Schutt-Aine 15 Surface Roughness Copper surfaces are rough to facilitate adhesion to dielectric during PCB manufacturing When the tooth height is comparable to the skin depth, roughness effects cannot be ignored Surface roughness will increase ohmic losses ECE 546 – Jose Schutt-Aine 16 Hammerstad Model K H Rs RH f Rdc f when t when t RH f when t Lexternal 2 f LH f RH f t L when t external 2 f t ECE 546 – Jose Schutt-Aine 17 Hammerstad Model 2 2 hRMS K H 1 arctan 1.4 hRMS: root mean square value of surface roughness height : skin depth f=t: frequency where the skin depth is equal to the thickness of the conductor ECE 546 – Jose Schutt-Aine 18 Hemispherical Model K hemi Rs Rhemi f Rdc f when t when t Rhemi f when t Lexternal 2 f Lhemi f Rhemi f t L when t external 2 f t ECE 546 – Jose Schutt-Aine 19 Hemispherical Model K hemi Ks 1 when K s 1 K s when K s 1 Re 3 / 4k 2 1 1 o / 4 Atile Abase o / 4 Atile 2 j 3 1 / r 1 j 1 kr 3 1 / 2r 1 j 1 2 1 4 j / k r 1/ 1 j 3 2j kr 3 1 2 j / k 2 r 1/ 1 j ECE 546 – Jose Schutt-Aine 20 Huray Model K Huray Rs RHuray f Rdc f when t when t RHuray f when t Lexternal 2 f LHuray f RHuray f t L when t external 2 f t ECE 546 – Jose Schutt-Aine 21 Huray Model K Huray Pflat PN _ spheres Pflat 2 3 1 Re H o 1 1 2 k 2 n n1 N PN _ spheres Pflat o / 4 Atile o / o ' 2 j 3 1 / r 1 j 1 kr 3 1 / 2r 1 j Ho: magnitude of applied H field. 2 2 j 3 1 4 j / k r 1/ 1 j 1 kr 3 1 2 j / k 2 r 1/ 1 j ECE 546 – Jose Schutt-Aine 22 Dielectrics and Polarization No field Applied field Field causes the formation of dipoles polarization Bound surface charge density –qsp on upper surface and +qsp on lower surface of the slab. ECE 546 – Jose Schutt-Aine 23 Dielectrics and Polarization D o Ea P o Ea o e Ea o 1 e Ea s Ea P : polarization vector D : electric flux density Ea : applied electric field e : electric susceptibility o : free-space permittivity s : static permittivity ECE 546 – Jose Schutt-Aine 24 Dielectric Constant Material Air Styrofoam Paraffin Teflon Plywood RT/duroid 5880 Polyethylene RT/duroid 5870 Glass-reinforced teflon (microfiber) Teflon quartz (woven) Glass-reinforced teflon (woven) Cross-linked polystyrene (unreinforced) Polyphenelene oxide (PPO) Glass-reinf orced polystyrene Amber Rubber Plexiglas ECE 546 – Jose Schutt-Aine r 1.0006 1.03 2.1 2.1 2.1 2.20 2.26 2.35 2.32-2.40 2.47 2.4-2.62 2.56 2.55 2.62 3 3 3.4 25 Dielectric Constants Material r Lucite Fused silica Nylon (solid) Quartz Bakelite Formica Lead glass Mica Beryllium oxide (BeO) Marble Flint glass Ferrite (FqO,) Silicon (Si) Gallium arsenide (GaAs) Ammonia (liquid) Glycerin Water 3.6 3.78 3.8 3.8 4.8 5 6 6 6.8-7.0 8 10 12-16 12 13 22 50 81 ECE 546 – Jose Schutt-Aine 26 AC Variations When a material is subjected to an applied electric field, the centroids of the positive and negative charges are displaced relative to each other forming a linear dipole. When the applied fields begin to alternate in polarity, the permittivities are affected and become functions of the frequency of the alternating fields. ECE 546 – Jose Schutt-Aine 27 AC Variations Reverses in polarity cause incremental changes in the static conductivity ssheating of materials using microwaves (e.g. food cooking) When an electric field is applied, it is assumed that the positive charge remains stationary and the negative charge moves relative to the positive along a platform that exhibits a friction (damping) coefficient d. ECE 546 – Jose Schutt-Aine 28 Complex Permittivity r' 1 N eQ 2 2 o 2 om 2 o 2 2 d m 2 d 2 NQ m r" e 2 om 2 d 2 2 o m s o m N e : dipole density m : mass Q : dipole charge d : damping coefficient o : free space permittivity o: natural frequency s : spring (tension) factor : applied frequency ECE 546 – Jose Schutt-Aine 29 Complex Permittivity H J i J c j E J i s s E j ' j " E H J i s s " E j ' E J i s e E j ' E s e equivalent conductivity s s " s s s a s a alternating field conductivity " s s static field conductivity se: total conductivity composed of the static portion ss and the alternative part sa caused by the rotation of the dipoles ECE 546 – Jose Schutt-Aine 30 Complex Permittivity J t J i J ce J de J i s e E j ' E J i : total electric current density J t : impressed (source) electric current density J ce : effective electric conduction current density J de : effective displacement electric current density se J t J i s e E j ' E J i j ' 1 j E J i j ' 1 j tan e E ' se ss sa ss sa tan e effective electric loss tangent ' ' ' ' ECE 546 – Jose Schutt-Aine 31 Complex Permittivity ss " e" tan e tan s tan a ' ' ' e ss tan s static electric loss tangent ' sa " tan a alternating electric loss tangent ' ' se J cd J ce J de s e E j ' E j ' 1 j E j ' 1 j tan e E ' ECE 546 – Jose Schutt-Aine 32 Dielectric Properties Good Dielectrics: se ' se J cd j ' 1 j E ' Good Conductors: se ' 1 j ' E 1 se J cd j ' 1 j E seE ' ECE 546 – Jose Schutt-Aine 33 Dielectric Properties Good Dielectrics: se ' se J cd j ' 1 j E ' Good Conductors: se ' 1 j ' E 1 se J cd j ' 1 j E seE ' ECE 546 – Jose Schutt-Aine 34 Kramers-Kronig Relations There is a relation between the real and imaginary parts of the complex permittivity: r' 1 2 ' r" ' ' 2 0 r" 2 ' 2 1 r ' ' 0 2 2 d ' d ' Debye Equation ' ' r ( ) r' ( ) j r" ( ) r' rs r 1 j e ECE 546 – Jose Schutt-Aine 35 Kramers-Kronig Relations e is a relaxation time constant: rs' 2 e ' r 2 ' ' r' r' rs r 2 1 e r" ECE 546 – Jose Schutt-Aine ' ' rs r e 1 e 2 36 Dielectric Materials Material Air Alcohol (ethyl) Aluminum oxide Bakelite Carbon dioxide Germanium Glass Ice Mica Nylon Paper Plexiglas Polystyrene Porcelain r ’ 1.0006 25 8.8 4.74 1.001 16 4*7 4.2 5.4 3.5 3 3.45 2.56 6 tan 0.1 6 x 10-4 22x10-3 1 x 10-3 0.1 6x10-4 2x10-2 8 x 10-3 4 x 10-2 5x10-5 14x10-3 ECE 546 – Jose Schutt-Aine 37 Dielectric Materials Material Pyrex glass Quartz (fused) Rubber Silica (fused) Silicon Snow Sodium chloride Soil (dry) Styrofoam Teflon Titanium dioxide Water (distilled) Water (sea) Water (dehydrated) Wood (dry) r ’ 4 3.8 2.5-3 3.8 11.8 3.3 5.9 2.8 1.03 2.1 100 80 81 1 1.5-4 tan 6x10-4 7.5x10-4 2 x 10-3 7.5 x 10-4 0.5 1x10-4 7 x 10-2 1x10-4 3x10-4 15 x 10-4 4x10-2 4.64 0 1x10-2 ECE 546 – Jose Schutt-Aine 38 PCB Stackup Source: H. Barnes et al, "ATE Interconnect Performance to 43 Gps Using Advanced PCB Materials", DesignCon 2008 ECE 546 – Jose Schutt-Aine 39 Differential Signaling Differential signaling is widely used in the industry today. High-speed serial interfaces such as PCI-E, XAUI, OC768, and CEI use differential signaling for transmitting and receiving data in point-to-point topology between a driver (TX) and receiver (RX) connected by a differential pair. The skew (time delay) between the two traces of the differential pair should be zero. Any skew between the two traces causes the differential signal to convert into a common signal. ECE 546 – Jose Schutt-Aine 40 Fiber Weave Effect Fiberglass weave pattern causes signals to propagate at different speeds in differential pairs Source: S. McMorrow, C. Heard, "The Impact of PCB Laminate Weave on the Electrical Performance of Differential Signaling at Multi-Gigabit Data Rates", DesignCon 2005. ECE 546 – Jose Schutt-Aine 41 Fiber Weave Effect Source: Lambert Simonovich, "Practical Fiber Weave Effect Modeling", White Paper-Issue 3, March 2, 2012. ECE 546 – Jose Schutt-Aine 42 Fiber Weave Effect Source: S. Hall and H. Heck , Advanced Signal Integrity for High-Speed Digital Designs, J. Wiley, IEEE , 2009. ECE 546 – Jose Schutt-Aine 43 Fiber Weave Effect Group delay variation Source: S. McMorrow, C. Heard, "The Impact of PCB Laminate Weave on the Electrical Performance of Differential Signaling at Multi-Gigabit Data Rates", DesignCon 2005. ECE 546 – Jose Schutt-Aine 44 Fiber Weave Effect Group delay variation: effect of angle Source: S. McMorrow, C. Heard, "The Impact of PCB Laminate Weave on the Electrical Performance of Differential Signaling at Multi-Gigabit Data Rates", DesignCon 2005. ECE 546 – Jose Schutt-Aine 45 Fiber Weave Effect Straight traces Source: S. Hall and H. Heck , Advanced Signal Integrity for High-Speed Digital Designs, J. Wiley, IEEE , 2009. ECE 546 – Jose Schutt-Aine 46 Fiber Weave Effect 45o traces Source: S. Hall and H. Heck , Advanced Signal Integrity for High-Speed Digital Designs, J. Wiley, IEEE , 2009. ECE 546 – Jose Schutt-Aine 47 Fiber Weave Effect straight traces zig-zag traces Source: PCB Dielectric Material Selection and Fiber Weave Effect on High-Speed Channel Routing, Altera Application Note AN-528-1.1, January 2011. ECE 546 – Jose Schutt-Aine 48 Fiber Weave Effect Skew on straight traces Source: PCB Dielectric Material Selection and Fiber Weave Effect on High-Speed Channel Routing, Altera Application Note AN-528-1.1, January 2011. ECE 546 – Jose Schutt-Aine 49 Fiber Weave Effect Skew on zig-zag traces Source: PCB Dielectric Material Selection and Fiber Weave Effect on High-Speed Channel Routing, Altera Application Note AN-528-1.1, January 2011. ECE 546 – Jose Schutt-Aine 50 Fiber Weave Effect • Mitigation Techniques Use wider widths to achieve impedance targets. Specify a denser weave (2116, 2113, 7268, 1652) compared to a sparse weave (106, 1080). Move to a better substrate such as Nelco 4000-13 Perform floor planning such that routing is at an angle rather than orthogonal. Make use of zig-zag routing ECE 546 – Jose Schutt-Aine 51