Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
1
회로 이론 (2014)
EMLAB
Review of circuit theory I
2
1. Linear system
2. Kirchhoff’s law
3. Nodal & loop analysis
4. Superposition
5. Thevenin’s and Norton’s theorem
6. Resistor, Inductor, Capacitor
7. Operational amplifier
8. First and second order transient circuit
EMLAB
3
Linear system
i1 (t)
Linear system
L
1 (t)
i2 (t)
Linear system
L
2 (t)
Ai1 Bi2 (t)
Linear system
L
A1 (t) B 2 (t)
A system satisfying the above statements is called as a linear system.
Resistors, Capacitors, Inductors are all linear systems. An independent
source is not a linear system.
All the circuits in the circuit theory class are linear systems!
EMLAB
4
Examples of Linear system
R1
output
Resistor
R (t ) 1k
R1
i1 (t )
R (t ) i1 (t ) R1
input
C (t ) -
Capacitor
C1
C1
i2 (t )
1n
input
1 t
C (t ) i2 (t ) dt
C0
EMLAB
5
Inductor
L (t) i2 (t )
L (t ) L
di2
dt
EMLAB
6
Kirchhoff’s Voltage law
E dr 0
n ( t ) 0
n
C
Sum of voltage drops along a closed loop should be equal to zero!
1 (t ) 2 (t ) - s (t ) 0
1 (t) R1
2 (t) C1
s (t)
-
EMLAB
7
Kirchhoff’s Current law
J da 0
I n (t ) 0
n
S
Sum of outgoing(incoming) currents from any node should be equal to zero!
1 (t )
i2 (t )
i1 (t )
2 (t )
0 (t)
R2
R1
R3
0 - 1
R1
, i2 (t )
0 - 2
R2
, i3 (t )
0 -3
R3
i3 (t )
Current definition
i
n
i1 (t )
3 (t )
a
I n (t ) i1 (t ) i2 (t ) i3 (t ) 0
R
b
a b
R
0 - 1 0 - 2
R1
R2
0 -3
R3
0
• To define a current, a direction can be
chosen arbitrarily.
• The value of a current can be obtained
from a voltage drop along the direction
of current divided by a resistance met.
EMLAB
8
Nodal analysis
• Unknowns : node voltages
• Kirchhoff’s current law is utilized to form matrix equations.
• For each node, the sum of out-going currents become zero.
1 - 0 1 - 0
6k
12k
6m 0
6m
2 - 0 2 - 0
4k
4k
0
2
1
EMLAB
9
Loop analysis
• Unknowns : loop currents
• Matrix equations are formed by Kirchhoff’s voltage law.
• For each loop, the sum of voltage drops are equal to zero.
i1
i2
i3
4k (i3 i2 ) 4k i3 0
6k i1 12k (i1 i2 ) 0
i2 6m
EMLAB
10
Superposition
• Superposition is utilized to simplify the original linear circuits.
• If a voltage source is eliminated, it is replaced by a short circuit connected to
the original terminals.
• If a current source is eliminated, it is replaced by an open circuit.
L L1 L 2
Circuit
L
=
Circuit
L1
+
L2
Circuit
Circuit with current
source set to zero(OPEN)
Circuit with voltage source
set to zero (SHORT CIRCUITED)
EMLAB
11
Example
02 01 02 4 24 20V
01
01
6k
12V 4V
6k 6k 6k
02
02
1
6k
1
1
6k 12k
6m 6k
2
36 24V
2 1
EMLAB
12
Thevenin and Norton equivalent
Resistance obtained with voltage source
shorted and current source open
V
Open circuited voltage
measured by voltmeter
A
Short circuited current
measured by ammeter
EMLAB
13
Example
RTh 2k || 2k 1k
VTh
RTh 2k || 2k 1k
2k
12V 6V
2k 2k
IN
12V
6mA
2k
EMLAB
Resistor – Input output relationship
14
i(t)
I_Probe1.i, A
8
i(t)
6
4
2
0
0
2
4
6
8
10
6
8
10
time, sec
v(t)
v(t)
20
Vout, V
(t ) R i (t )
15
10
5
0
0
2
4
time, sec
EMLAB
Capacitor – Input output relationship
15
i(t)
8
I_Probe1.i, A
6
4
2
0
i(t)
0
2
4
6
8
10
time, sec
t
v(t)
v(t)
25
1 t
(t ) 0 i ( )d
C
Vout, V
20
15
10
5
0
0
2
4
6
8
10
time, sec
EMLAB
Inductor – Input output relationship
16
i(t)
I_Probe1.i, A
8
6
4
2
0
0
i(t)
2
4
6
8
10
6
8
10
time, sec
v(t)
v(t)
4
di
(t ) L
dt
Vout, V
3
2
1
0
-1
0
2
4
time, sec
EMLAB
17
First order transient circuit
The voltage drop across a capacitor cannot
change instantaneously.
vC iR 0
dvC
0, vC (t 0) VS
dt
vC Ae st , Ae st (1 RCs ) 0
vC RC
1
t
1
s
, vC Ae RC
RC
The current through an inductor
cannot change instantaneously.
di
VS (t 0), i (t 0) 0
dt
R
t
V
di
iR L 0, i (t ) Ae L S
dt
R
R
t
VS
i (t ) [1 e L ]
R
iR L
EMLAB
18
Second order transient circuit
R
L
s
C
out
di
1 t
L iR i (t )dt C (0) s
dt
C0
0
d 2i R di
i
2
0
dt
L dt LC
( t 0)
( t 0)
out
1t
i (t )dt
C0
Normalized form
d 2i
di
2
2
0
0i 0
dt 2
dt
2
1
R
0
,
LC
2
L
0
2
1
R
0
,
LC
20 L
i (t ) e st s 2 20 s 02 0
s1, 2 0 0 2 1
EMLAB
19
Solution
Over-damped : ζ > 1
Under-damped : ζ <1
i (t ) K1e s t K 2 e s t
i (t ) e t A1 cos d t A2 sin d t
i ( 0 ) K1 K 2 0
i (0 ) A1 0
1
L
2
di
(0 ) s1 K1 s2 K 2 s
dt
0
L
1 2
0
d
di
(0 ) 0 A1 d A2 s
dt
Critically damped : ζ = 1
i (t ) B1 B2 t e t
0
i (0 ) B1
L
di
(0 ) 0 B1 B2 s
dt
EMLAB
20
Critically damped: ζ=1인 경우
d 2i
di
2
(
t
)
2
(
t
)
0
0 i (t ) 0
2
dt
dt
1
0t [e0t i (t )] 0 [e0t i (t )] 0
e
e0t i (t ) B1t B2
i (t ) ( B1t B2 )e 0t
EMLAB
21
Transient response
Under-damped
0.25
1.6
1 Critically damped
1.4
1.2
Vout, V
1.0
0.8
0.6
1.25
Over-damped
0.4
0.2
0.0
0
5
10
15
20
25
30
time, sec
EMLAB
22
Ringing in digital logics
in
s
R
s
L
C
out
EMLAB
Contents : Circuit theory 2
23
1. AC steady-state analysis : 60Hz sinusoidal input signal
• Power factor
2. Magnetically coupled networks : transformer
3. Poly-phase circuits : power distribution
• Single phase two wire
• Three phase 4 wire power distribution
4. Arbitrary input signal
• Fourier series and Fourier transform
• Laplace transform
5. Two-port network : black box
EMLAB
24
Chapter 8
AC steady-state analysis
EMLAB
25
Sinusoidal input signal
t0
s
R
L
C
out
0
( t 0)
d 2x
dx
2
(t ) 20
(t ) 0 x (t )
dt 2
dt
Vs cos s t (t 0)
입력 전압의 형태
EMLAB
26
Sinusoids
x (t ) X M sin t
Dimensionless plot
As function of time
xlead (t ) X M sin (t t0 )
X M amplitude or maximum value
angular frequency (rads/sec)
t argument (radians)
T
f
2
Period x(t ) x(t T ), t
1
frequency in Hertz (cycle/sec )
T 2
2 f
“Lead by t0”
t0
t0
xlag (t ) X M sin (t t0 )
“Lag by t0”
EMLAB
27
AC (Alternating Current)
• Easy to generate (교류 전압은 만들기 쉽다.)
• Easy to change voltage levels. (전압을 변화하기도 쉽다.)
• Less damage on human compared with DC (직류에 비해 덜 위험하다.)
60Hz, 220 Vrms
EMLAB
28
Solution of Differential Eq.
di
KVL : L (t ) Ri (t ) VS (t ), i (0 ) 0
dt
To solve a differential equation, initial conditions
must be specified.
L
d [ih (t ) i p (t )]
dt
L
V0 cos t (t 0)
VS (t )
(t 0)
0
L
R [ih (t ) i p (t )] VS (t )
dih
(t ) Ri h (t ) 0
dt
di p
dt
(t ) Ri p (t ) VS (t )
i(t ) ih (t ) i p (t )
ih (t ) : Homogeneou s solution
i p (t ) : Particular solution
EMLAB
29
Solution method #1
di
L h (t ) Ri h (t ) 0
dt
L
di p
dt
ih (t ) Ae Ae
st
R
t
L
(t ) Ri p (t ) VS (t ) i p (t ) B cos(t )
For a particular solution, choose a trial function that might
produce VS(t) on entering the differential Eq.
LB sin( t ) RB cos(t ) V0 cos t
( R cos L sin ) B cos t ( R sin L cos ) B sin t V0 cos t
B
V0
L
, tan
R cos L sin
R
i p (t )
i(t ) Ae
L
cos(t ), tan
2
2
R
R (L)
V0
R
t
L
1
L
cos(t ), tan 1
2
2
R
R (L)
V0
EMLAB
30
Simpler method for sinusoidal source case
L
di p
dt
j jt
jt
(t ) Ri p (t ) VS (t ) i p (t ) B cos(t ) Re{Be e } Re{Ie }
d
Re{Ie jt } R Re{Ie jt } V0 Re{e jt }
dt
d
Re L Ie jt RIe jt Re{V0 e jt }
dt
L
d
Re L Ie jt RIe jt V0 e jt 0
dt
d jt
Ie RIe jt V0 e jt 0
dt
jLIe jt RIe jt V0 e jt
L
e jt cos t j sin t
Complex Polar
x jy re j
r x 2 y 2 , tan 1
y
x
x r cos , y r sin
V0 e jt
V0
jt
I
, i p (t ) Re{Ie } Re
jL R
R
j
L
j jt
V0e jt
V0e e
i p (t ) Re
Re 2
2
R
j
L
R (L)
V0
R (L)
2
2
cos(t )
EMLAB
31
Phasor
j
V0e jt
V0e
jt
i(t ) Re
e Re I e jt
Re 2
2
R jL
R (L)
V0
Phasor : I
R jL
V0e j
R (L)
2
2
V0
R (L)
2
2
•
With sinusoidal source function, it is simpler to use a trial solution ~ Re{I ejwt}.
•
The complex coefficient of the exponential function is called as a phasor.
EMLAB
32
Phasor - resistor
R i(t) VS (t)
I_Probe1.i, A
Vout, V
2
1
0
Relationship between sinusoids
-1
(t )
-2
0
2
4
6
8
10
12
time, sec
14
16
18
20
i (t )
t
EMLAB
33
Phasor - inductor
Relationship between sinusoids
v(t ) L
di (t )
dt
(t )
d
Re{Ve } L Re{ Ie j t }
dt
V j L I
i (t )
j t
t
2
di (t )
v(t ) L
dt
Re{Ve j t } L
0
d
Re{ Ie j t }
dt
V j L I
v(t ) Re{Ve jt } Re{ j L Ie jt }
L Re{ Ie j (t / 2) } LI cos(t / 2)
EMLAB
34
Phasor - capacitor
Relationship between sinusoids
i (t )
(t )
i (t ) C
dv (t )
dt
d
Re{Ie } C Re{Ve j t }
dt
I j C V
j t
V
0
t
2
I
j C
EMLAB
35
Examples
L 0.05H , I 4 30( A), f 60 Hz
C 150 F , I 3.6 145, f 60 Hz
Find the voltage across the inductor
Find the voltage across the inductor
2 f 120
V jLI
V 120 0.05 190 4 30
V 2460
v (t ) 24 cos(120 60)
2 f 120
I jCV V
V
I
jC
3.6 145
120 150 106 190
200
V
235
v (t )
200
cos(120 t 235)
EMLAB
36
Impedance and Admittance
I M i
Z z
VM v
AC circuit
Impedance :
Admittance :
Element
V VM v VM
( v i ) Z M z R jX
I
I M i I M
I
Y YY Y G jB
V
Z
Impedance
Admittance
R
ZR R
YR
L
Z L j L
YL
C
ZC
1
j C
1
R
1
j L
YC j C
EMLAB
37
Series / parallel combination
Z1
Z2
Y1
1
Z1
Y2
1
Z2
Y3
1
Z3
Z3
Yeq Y1 Y2 Y3
Z eq Z1 Z 2 Z 3
Yeq
1
1 1 1
Y1 Y2 Y3
Z eq
1
1
1
1
Z1 Z 2 Z 3
EMLAB
38
Example
Find the current i(t) in the network in Fig. E8.8.
Y1
Y2
Y1 j 377 50 10 6 j 0.0189
Y2
1
0.0319 j 0.024
3
20 j 377 40 10
Yeq Y1 Y2 0.0319 j 0.0052 0.0323 9.25
I YeqV 0.0323 9.25 120 30 3.88 39.25
i (t ) 3.88 cos(377t 39.25)
EMLAB
39
Example 8.15
Super node
V1 V2 60
V1
V
V
20 2 2 0
1 j1
1 1 j
V2 6 V2
V
2 2
1 j1 1 1 j
1
1
V2
1
1
1 j1
6
2
j
1 j1
V2 2.5 j1.5
I0
V2
2.5 j1.5 [ A]
1
EMLAB