Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Waves Wave function A sinusoidal wave (monochromatic) is described by t x φ(x, t) = A sin 2π[ ± ] T λ the sign + or − corresponds to waves moving in the direction or the opposite direction w.r.t. x, respectively. φ(x, t) = instantaneous displacement at the time t and in the point x (deformation of a solid, pressure in a gas, magnetic or electric field, ...). When φ(x, t) oscillated in the of propagation with have longitudinal waves, When φ(x, t) oscillates in the perpendicular direction we have transversal waves. When wave oscillates in a direction and this does not varies we have a polarized wave. Wave function Waves A sinusoidal wave (monochromatic) is described by t x φ(x, t) = A sin 2π[ ± ] T λ the sign + or − corresponds to waves moving in the direction or the opposite direction w.r.t. x, respectively. A wave amplitude or maximal displacement λ = vT = wave-length of the wave, T time periodicity of the wave propagating at velocity v. The period T is the time necessary to the wave to travel a length λ. f = T1 = λc temporal frequency of the wave. Wave intensity I = 2π 2 f 2 vρA2 I intensity [W/m2 ] of the wave; power emitted for area unit in the normal direction of propagation. ρ = density of the W medium. Decibel (dB) β = log II0 where I0 = 10−12 m 2. Speed of sound in a�material v= E ρ v speed of the longitudinal waves in liquids or solids where E is the bulk modulus (compressibility) of the material or the Yung’s coefficient. v= � F µ v speed of the transversal waves in a wire with tension F and linear density µ [Kg/m] Interference Principle of superposition If in a given point and time two or more waves coexists, the effective displacement is the sum (resultant) of the single wave displacements. Standing wave For waves of equal amplitude and frequency,. propagating in opposite directions we have φ1 = A sin 2π[ φtot t x t x + ] , φ2 = A sin 2π[ − ] T λ T λ x t = φ1 + φ2 = 2A cos[2π ] sin[2π ] λ T Harmonic systems A harmonic system of period T (vibrating string, air column in a tube, etc...) is characterised by a set of standing waves with quantised spectrum of frequencies fn = Tn . A vibrating string of length L is characterised by quantised wave-lengths λn = 2L n , such that: v v fn = =n· λn 2L Harmonic systems Fourier’s theorem every wave (function) of fundamental period T generic timber is uniquely characterised by the superposition of sinusoidal (monochromatic) waves of defined ferquencies, amplitudes and phases φtot (t) = � n t + ψn ] An sin[2π Tn Spettro di frequenza Ampiezza Human voice frequenza Onda sonora tempo tempo Doppler effect f� = f v ± v0 v ∓ vs in the approximation of small velocities w.r.t. the speed of sound v in the medium. f � = effective frequency experienced by the observer; f frequency of the sound source; ±v0 and ∓vs are the velocities of the observer and of the sound source w.r.t. the medium, respectively (+ e − for approaching and − e + departing). Undulatory optics Spectrum of electromagnetic waves A = amplitude I ∝ A2 = intensity A I A cos θ I cos2 θ Interference (Young’s experiment) The superposition of coherent electromagnetic waves coming from two slits S1 and S2 generates on a screen an interference patten. The directions of the maximal constructive interferences is given S sin θ = kλ, massimi λ S sin θ = (2k + 1) , minimi 2 where k = 1, 2, 3, . . . , S = distance between S1 e S2 , θ angle w.r.t. the optical axis ; λ = wave-length. Diffraction or refraction gratings Huygens-Fresnel’s principle: every point on a slit behaves as a independent source of electromagnetic waves Thin films In every reflection the light has a variation of phase π. The superposition of coherent light waves coming from the reflection on the first and second surface of a thin film of transparent material originates on the screen interference patten whose maximal directions are given by: λ d sin θ = (2k + 1) , massimi 2 d sin θ = kλ, minimi where k = 1, 2, 3, . . . , d = is the size of the film, θ is the angle w.r.t. the optical axis, λ is the wave length. . OTTICA GEOMETRICA Leggi della riflessione θi = θr θi e θr angolo di incidenza e di riflessione. Il raggio incidente, riflesso e la normale alla superficie giacciono sullo stesso piano. Leggi della rifrazione sin θi n2 = = n21 � sin θr n1 θi e θr angolo di incidenza e di rifrazione. n1 e n2 indici di rifrazione del mezzo 1 e 2 (proporzionali alla velocità della luce in quel mezzo). n21 = n indice di rifrazione relativo. Prisma di rifrazione L’indice di rifrazione dipende dalla lunghezza d’onda in quel materiale n21 = λλ12 Riflessione Totale Dal passaggio ad un mezzo più rifrangente ad uno meno rifrangente si ha la riflessione totale interana per angoli di incidenza maggiori dell’angolo limite θL , tale che: sin θL = Fibra ottica n2 = n21 n1 Specchi (o lenti) sferici 1 1 1 + = s1 s2 f s1 distanza dell’oggetto del centro della lente. s2 distanza dell’immagine dal centro della lente. f = 1/D = distanza focale (> 0 convergenti, < 0 divergenti), D = diottrie. m = − ss12 ingrandimento (< 0 immagine capovolta) Immagine REALE se i raggi luminosi convergono effettivamente nel punto immagine in modo da poter essere proiettata su di uno schermo. Immagine VIRTUALE se è formata dai soli prolungamenti dei raggi luminosi. Microscopio Cannocchiale