* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Trigonometric Ratios
Line (geometry) wikipedia , lookup
History of geometry wikipedia , lookup
Golden ratio wikipedia , lookup
Integer triangle wikipedia , lookup
Euclidean geometry wikipedia , lookup
Rational trigonometry wikipedia , lookup
Pythagorean theorem wikipedia , lookup
Name LESSON 8-2 Date Class Reteach Trigonometric Ratios Trigonometric Ratios leg opposite !A 4 ! 0.8 sin A ! ______________ ! __ 5 hypotenuse " hypotenuse leg opposite !A leg adjacent to !A 3 ! 0.6 cos A ! ________________ ! __ 5 hypotenuse ! leg opposite !A 4 ! 1.33 tan A ! ________________ ! __ 3 leg adjacent to !A # leg adjacent to !A You can use special right triangles to write trigonometric ratios as fractions. leg opposite !Q sin 45" ! sin Q ! ______________ hypotenuse "2 !"# X qi $ x ! ___ 1 ! ____ ! ! x"2 ! "2 ! ___ 2 5 2 1 !"# $X X X 3 '&# X %&# 4 X qi % 6 ! "2 . So sin 45" ! ___ 2 Write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth. 1. sin K 2. cos H 15 ! 0.88 ___ + () * * (" ( 15 ! 0.88 ___ 17 17 3. cos K 4. tan H 8 ! 0.47 ___ 8 ! 0.53 ___ 17 15 Use a special right triangle to write each trigonometric ratio as a fraction. 5. cos 45" 6. tan 45" ! "2 ___ 1!1 __ 1 2 7. sin 60" 8. tan 30" ! ! "3 ___ "3 ___ 2 Copyright © by Holt, Rinehart and Winston. All rights reserved. 3 14 Holt Geometry Name Date Class Reteach LESSON 8-2 Trigonometric Ratios continued You can use a calculator to find the value of trigonometric ratios. cos 38" ! 0.7880107536 or about 0.79 You can use trigonometric ratios to find side lengths of triangles. Find WY. adjacent leg cos W ! __________ hypotenuse Write a trigonometric ratio that involves WY. 7.5 cm cos 39° ! ______ WY 7 Substitute the given values. 7.5 WY ! ______ cos 39° WY ! 9.65 cm CM 8 Solve for WY. Simplify the expression. 9 Use your calculator to find each trigonometric ratio. Round to the nearest hundredth. 9. sin 42" 10. cos 89" 0.67 0.02 11. tan 55" 12. sin 6" 1.43 0.10 Find each length. Round to the nearest hundredth. 13. DE 14. FH $ & (&+-./ %(# ' (*+, $)# # % ( 39.65 m 6.01 in. 15. JK 16. US , 3 4 %!/'+,, $$/"+0, + (*# ''# * 5 32.91 mm Copyright © by Holt, Rinehart and Winston. All rights reserved. 55.32 cm 15 Holt Geometry /BNF %BUF $MBTT /BNF 1SBDUJDF" -&440/ *O&YFSDJTFToGJMMJOUIFCMBOLTUPDPNQMFUFFBDI EFGJOJUJPO5IFOVTFTJEFMFOHUITGSPNUIFGJHVSFUP DPNQMFUFUIFJOEJDBUFEUSJHPOPNFUSJDSBUJPT " C ! A # B PQQPTJUF 5IFTJOFTJO PGBOBOHMFJTUIFSBUJPPGUIFMFOHUIPGUIFMFH IZQPUFOVTF UIFBOHMFUPUIFMFOHUIPGUIF 5SJHPOPNFUSJD3BUJPT 6TFUIFGJHVSFGPS&YFSDJTFTo8SJUFFBDIUSJHPOPNFUSJD SBUJPBTBTJNQMJGJFEGSBDUJPOBOEBTBEFDJNBMSPVOEFEUP UIFOFBSFTUIVOESFEUI ! TJO" UBO# D C B DPT- - @@ #$ , UBO. @@ r @@@ DPT ^ r @@@ UBO " DPT UBO ^ r @@@ ^ r UBO . ! 6TFBDBMDVMBUPSUPGJOEFBDIUSJHPOPNFUSJDSBUJP3PVOEUPUIF OFBSFTUIVOESFEUI @@ ^ @@ TJO 6TFUIFGJHVSFGPS&YFSDJTFTo8SJUFFBDIUSJHPOPNFUSJD SBUJPBTBTJNQMJGJFEGSBDUJPOBOEBTBEFDJNBMSPVOEFEUP UIFOFBSFTUIVOESFEUI @@@ 6TFTQFDJBMSJHIUUSJBOHMFTUPXSJUFFBDIUSJHPOPNFUSJDSBUJPBTB TJNQMJGJFEGSBDUJPO C UBO# @@@ C @@@ PQQPTJUF 5IFUBOHFOUUBO PGBOBOHMFJTUIFSBUJPPGUIFMFOHUIPGUIFMFH BEKBDFOU UPUIFBOHMF UIFBOHMFUPUIFMFOHUIPGUIFMFH B UBO" @@@ UBO" @@@ D DPT" B DPT# @@@ DPT" @@@ D @@@ TJO# BEKBDFOU 5IFDPTJOFDPT PGBOBOHMFJTUIFSBUJPPGUIFMFOHUIPGUIFMFH IZQPUFOVTF UPUIFBOHMFUPUIFMFOHUIPGUIF # @@@ " DPT# @@@ C TJO# @@@ B TJO" @@@ D $MBTT 1SBDUJDF# -&440/ 5SJHPOPNFUSJD3BUJPT TJO- %BUF TJO¡ DPT¡ UBO¡ 6TFBDBMDVMBUPSUPGJOEFBDIUSJHPOPNFUSJDSBUJP3PVOEUPUIFOFBSFTUIVOESFEUI DPT TJO UBO 'JOEFBDIMFOHUI3PVOEUPUIFOFBSFTUIVOESFEUI $ "'( " 2 # N 8 )%+, 2 4 '-( 5IFHMJEFTMPQFJTUIFQBUIBQMBOFVTFTXIJMFJUJTMBOEJOHPO BSVOXBZ5IFHMJEFTMPQFVTVBMMZNBLFTBBOHMFXJUIUIF HSPVOE"QMBOFJTPOUIFHMJEFTMPQFBOEJTNJMFGFFU GSPNUPVDIEPXO6TFUIFUBOHFOUSBUJPBOEBDBMDVMBUPSUP GJOE &'UIFQMBOFTBMUJUVEFUPUIFOFBSFTUGPPU $PQZSJHIUªCZ)PMU3JOFIBSUBOE8JOTUPO "MMSJHIUTSFTFSWFE /BNF $ & MI %BUF $MBTT )PMU(FPNFUSZ 6%+, -!( ! 5SJHPOPNFUSJD3BUJPT Y @@@ @@@@ ^ ^ Yr r ^ r @@@ -%01/ DN #OPYRIGHTÚBY(OLT2INEHARTAND7INSTON !LLRIGHTSRESERVED 1 .)( X 3 "$( 'X X 8SJUFFBDIUSJHPOPNFUSJDSBUJPBTBGSBDUJPOBOEBTBEFDJNBM SPVOEFEUPUIFOFBSFTUIVOESFEUI # DPT) TJO, z @@@ X *$( 4 X qi * 6 + #- ! * #) ( z @@@ DPT, UBO) z @@@ z @@@ 6TFBTQFDJBMSJHIUUSJBOHMFUPXSJUFFBDIUSJHPOPNFUSJDSBUJPBTBGSBDUJPO DPT UBO ^ r @@@ @@ TJO UBO ^ ^ r @@@ #)%3& LN 5 2 .)( X qi ' r 4PTJO @@@ -)( r @@@ "/6%2& $PQZSJHIUªCZ)PMU3JOFIBSUBOE8JOTUPO "MMSJHIUTSFTFSWFE # ^ ../#%+, ../#%+, MFHBEKBDFOUUP" MFHPQQPTJUF2 TJO TJO2 @@@@@@@@@@@@@@ IZQPUFOVTF 6TFUIFGPSNVMBZPVEFWFMPQFEJO&YFSDJTFUPGJOEUIFNJTTJOHTJEFMFOHUIJO FBDIUSJBOHMF3PVOEUPUIFOFBSFTUIVOESFEUI .%3& !)( ! :PVDBOVTFTQFDJBMSJHIUUSJBOHMFTUPXSJUFUSJHPOPNFUSJDSBUJPTBTGSBDUJPOT HJWFT C CY Y Z B 4VCTUJUVUJOHC CY D B Y @ @ #VUDPT" D TPY DDPT""OPUIFSTVCTUJUVUJPOHJWFT B C D CDDPT" ))( MFHPQQPTJUF" MFHPQQPTJUF" UBO " @@@@@@@@@@@@@@@@ @@ z MFHBEKBDFOUUP" JO " IZQPUFOVTF MFHBEKBDFOUUP" DPT " @@@@@@@@@@@@@@@@ @@ IZQPUFOVTF *UBMTPTIPXTUIBUC Y Z B &YQBOEJOHUIFMBUUFSFRVBUJPO )PMU(FPNFUSZ 3FUFBDI MFHPQQPTJUF" TJO " @@@@@@@@@@@@@@ @@ IZQPUFOVTF # B 1PTTJCMFBOTXFS5IF1ZUIBHPSFBO5IFPSFNTIPXTUIBUY Z D -/-%2& $MBTT 5SJHPOPNFUSJD3BUJPT GU %BUF A C " 5IFMBXPGDPTJOFTJTBGPSNVMBUPGJOEUIFMFOHUIPGUIFUIJSETJEFPG BOZUSJBOHMFHJWFOUIFMFOHUITPGUXPTJEFTBOEUIFNFBTVSFPGUIF C A Y JODMVEFEBOHMF/PUF5IFMBXPGDPTJOFTBQQMJFTUPBOZUSJBOHMF CVUEFSJWJOHJUGPSBOPCUVTFUSJBOHMFSFRVJSFTNPSFLOPXMFEHFUIBO ! BX X ZPVIBWFMFBSOFETPGBS *OUIFGJHVSFTVQQPTFUIFMFOHUITCBOED B BOEUIFNFBTVSFPG"BSFLOPXO%FWFMPQUIFMBXPGDPTJOFTUPGJOEB &YQMBJOZPVSBOTXFS)JOU6TFUIFDPTJOFGVODUJPOBOEUIF1ZUIBHPSFBO5IFPSFN GU %& /BNF -/#%01/ N ZE $PQZSJHIUªCZ)PMU3JOFIBSUBOE8JOTUPO "MMSJHIUTSFTFSWFE -*( -/"%& &' " 6TFUIFGPSNVMBZPVEFWFMPQFEJO&YFSDJTFUPGJOEUIFBSFBPGFBDIUSJBOHMF 3PVOEUPUIFOFBSFTUIVOESFEUI .*( % )#( $ LN 45 ##%+, # '%+, GFFU 1PTTJCMFBOTXFS%SBXBOBMUJUVEFGSPN#BOEDBMMJUTMFOHUII5IFO @ TJO " @I D TPI DTJO"5IFGPSNVMBGPSUIFBSFBPGBUSJBOHMFJT "SFB @@CBTFIFJHIU4VCTUJUVUJPOHJWFT"SFB@@ CDTJO" *)( *#%45 & 2 -&440/ -'( , NJ ,. $ 4 )/#%3& 5SJHPOPNFUSJD3BUJPT -/'%& DN % % (JWFOUIFMFOHUITPGUXPTJEFTPGBUSJBOHMFBOEUIFNFBTVSFPGUIF JODMVEFEBOHMFUIFBSFBPGUIFUSJBOHMFDBOCFGPVOE*OUIFGJHVSF TVQQPTFUIFMFOHUITCBOEDBOEUIFNFBTVSFPG"BSFLOPXO%FWFMPQ BGPSNVMBGPSGJOEJOHUIFBSFB&YQMBJOZPVSBOTXFS)JOU%SBXBOBMUJUVEF *"( )* '-( - 1SBDUJDF$ -&440/ JO 3 GFFU 34 + $/!%&0 #$$%2& ) : 3 0 NN 21 ' ))( .#( 9; *!( ')%&& ##%& #% 1 ( #'/'%01/ 6TFBDBMDVMBUPSBOEUSJHPOPNFUSJDSBUJPTUPGJOEFBDIMFOHUI3PVOEUPUIF OFBSFTUIVOESFEUI 9 GU )PMU(FPNFUSZ $PQZSJHIUªCZ)PMU3JOFIBSUBOE8JOTUPO "MMSJHIUTSFTFSWFE )PMU(FPNFUSZ (OLT'EOMETRY Reteach LESSON 8-2 Challenge LESSON Trigonometric Ratios 8-2 continued You can use a calculator to find the value of trigonometric ratios. Trigonometry was first used to help build pyramids, but the greatest demand for trigonometry came from astronomers. To illustrate the trigonometric functions, astronomers used arcs and chords in circles. cos 38! ! 0.7880107536 or about 0.79 You can use trigonometric ratios to find side lengths of triangles. Follow the steps to explore trigonometric functions in a circle. You will need a compass, a protractor, a ruler, and a calculator. Record your measurements in the table. Hint: The trigonometric ratio cosine has a reciprocal ratio called 1 1 . secant, defined as secant T ! ________ . In abbreviated form, sec T ! _____ cosine T cos T Find WY. adjacent leg cos W " __________ hypotenuse Write a trigonometric ratio that involves WY. 7.5 cm cos 39° " ______ WY 7 Substitute the given values. 7.5 WY " ______ CM 8 1. With a compass, draw a circle of radius 1 inch, centered at T. Draw an acute angle, !RTU, in which R and U are points on the circle. Solve for WY. cos 39° WY ! 9.65 cm Simplify the expression. 2. Draw a line tangent to the circle at U. _ 3. Extend radius TR until it intersects the line that is tangent to the circle at U. Label the point of intersection S. _ _ 4. Extend TU and TS so you can make the following measurements accurately. With a protractor measure !T. Given TU " 1 inch, measure TS and US in inches. 5. Use your calculator to find tan T. To find sec T, find cos T. Then find the reciprocal by using the x#1 key. This will give sec T. 9 Use your calculator to find each trigonometric ratio. Round to the nearest hundredth. 9. sin 42! Trigonometric Ratios 10. cos 89! 0.67 0.02 11. tan 55! 3 12. sin 6! 1.43 0.10 2 Find each length. Round to the nearest hundredth. 13. DE 5 4 14. FH $ !(#)*+ & ' ,!' !"#$ %&' # % ( 39.65 m 15. JK Possible answer: 63" 16. US , 3 4 %%+/#0$ !"' ..' * 5 32.91 mm 15 LESSON 8-2 Holt Geometry LESSON 8-2 - + 4.80 ft 9.49 cm 4. The hypotenuse of a right triangle measures 9 inches, and one of the acute angles measures 36°. What is the area of the triangle? Round to the nearest square inch. 61.4 cm Reading Strategies Opposite Sine " __________ Hypotenuse Can Attract Horses Tigers Or Alligators 19 in2 Adjacent Cosine " __________ Hypotenuse Opposite Tangent " ________ Adjacent ! 24 " ___ 12 Example: sin B " ___ 26 13 10 " ___ 5 Example: cos B " ___ 26 13 # " 24 " ___ 12 Example: tan B " ___ 5 10 1. Make up your own mnemonic for remembering the ratios. S Answers will vary. O Choose the best answer. 5. A 14-foot ladder makes a 62° angle with the ground. To the nearest foot, how far up the house does the ladder reach? A 6 ft H 6. To the nearest inch, what is the length of the springboard shown below? C A H B 7 ft C 12 ft D 16 ft IN 7. What is EF, the measure of the longest side of the sail on the model? Round to the nearest inch. A 31 in. B 35 in. C 40 in. D 60 in. Holt Geometry Use a Mnemonic Such Outrageous Hats CM 3. A right triangle has an angle that measures 55°. The leg adjacent to this angle has a length of 43 cm. What is the length of the other leg of the triangle? Round to the nearest tenth. 16 You can remember the trigonometric ratios by using a mnemonic: one word for the first letter of each word in the equations. Here is a sample mnemonic and examples for the triangle at right. 2. Find the perimeter of the triangle. Round to the nearest hundredth. secT Possible answer: 2.20 _ Copyright © by Holt, Rinehart and Winston. All rights reserved. Trigonometric Ratios , length TS The length of US is close in value to tan T, and the length of TS is close in value to sec T. Problem Solving 1. A ramp is used to load a 4-wheeler onto a truck bed that is 3 feet above the ground. The angle that the ramp makes with the ground is 32°. What is the horizontal distance covered by the ramp? Round to the nearest hundredth. tanT Possible Possible 15 answer: 1.96 answer: 1 ___ inches 16 _ 55.32 cm Copyright © by Holt, Rinehart and Winston. All rights reserved. Possible answer: 1 _3_ inches 4 The tangent of an angle_ is defined as opposite over adjacent. The radius of 1 inch. adjacent side of !T is TU, which in your diagram is the_ 6. Do you see _any connection between the length of US and tan T and/or the length of TS and sec T ? Possible answer: ,-+.#$$ + length US Measure of !T 6.01 in. F 24 in. G 36 in. & O A 2. How are the ratios for sine and cosine alike? 8. Right triangle ABC is graphed on the coordinate plane and has vertices at A(#1, 3), B(0, 5), and C(4, 3). Which is a true trigonometric ratio for the measure of !C? F tan C " _1_ 2 IN % T H 38 in. J 127 in. ' Both ratios have Hypotenuse in the denominator. 3. Which side is not used when finding the tangent of an angle? hypotenuse 4. Use the triangle above to find the following. Write the ratios both as a fraction and as a decimal rounded to the nearest hundredth. G tan C " 2 a. sin A " ! "5 H sin C " ___ 10 ___ 26 b. cos A " 0.38 3 24 ___ 26 0.92 c. tan A " 10 ___ 24 0.42 J cos C " 2 Copyright © by Holt, Rinehart and Winston. All rights reserved. 17 Copyright © by Holt, Rinehart and Winston. All rights reserved. 001-062_Go07an_CRB_c08.indd 54 Process Black Holt Geometry Copyright © by Holt, Rinehart and Winston. All rights reserved. 54 18 Holt Geometry Holt Geometry 5/11/06 5:48:29 PM