Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
6.1A Reciprocal, Quotient, and Pythagorean Identities Recall the basic definitions for a unit circle: y sin   r x cos   r y tan   x sin  . Prove that tan   cos  y x y x  r r y r  r x y x L.S. = R.S. A trigonometric identity is a trigonometric equation that is true for all permissible values of the variable in the expressions on both sides of the equation. Both sides of the equation have the same value for all permissible values of the Math 30-1 1 variable. Trigonometric Identities Reciprocal Identities 1 csc   sin  sec   1 sin   csc  1 cos  cot   1 cos   sec  1 tan  1 tan   cot  Quotient Identities sin  tan   cos  Pythagorean Identities cos  cot   sin  sin2 + cos2 = 1 tan2 + 1 = sec2 cot2 + 1 = csc2 sin2 = 1 - cos2 cos2 = 1 - sin2 tan2 = sec2 - 1 cot2 = csc2 - 1 Math 30-1 2 Simplifying Trigonometric Expressions Identities can be used to simplify trigonometric expressions. Simplify to a single trigonometric expression. a) b) sin  cot   cos    sin    sin     cos  cot 2  1  sin2  cos 2  2 sin   cos 2  cos 2  1   2 sin  cos2   1 2 sin   csc 2  Math 30-1 3 Simplify to a single trigonometric expression. c) d) sin 2   cos 2   tan 2   1  tan 2  1  cos 2  sin  cos  sin 2   sin  cos   sec 2   sin  cos   tan  Math 30-1 4 Simplifing Trigonometric Expressions e) (1 + tan x)2 - 2 sin x sec x 1 cos x sin x 2  1  2 tan x  tan x  2 cos x 2  (1  tan x)  2 sin x  1  tan2 x  2tanx  2 tanx  sec2 x Math 30-1 csc x f) tan x  cot x 1  sin x sin x cos x  cos x sin x 1  sin x sin 2 x  cos 2 x sin xcos x 1  sin x 1 sin x cos x 1 sin x cos x   sin x 1  cos x 5 Proving an Identity using a Two Column Proof 1 1 2   2 cs c x 1  cos x 1  cos x (1  cos x)  (1  cos x) 2 csc2 x (1  cos x)(1  cos x) 2 (1  cos 2 x) 2 sin 2 x 2 csc 2 x L.S. = R.S. Math 30-1 6 Possible Strategies for Simplifying using Identities Trigonometric Simplifications: Look for familiar trig relationships and substitute Rewrite in terms of sine or cosine. If the expression contains squared terms, try using the Pythagorean Identities. Algebraic Simplifications: Multiply, expand, factor, reduce or square. Common denominator to add or subtract. Multiply by the conjugate of a binomial. 7