Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 1316 General Review for Trigonometry 7. 4x + 5y = 0, x 5 a. 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the measure of each angle in the problem. 1. Supplementary angles with measures 3x + 8 and 2x - 3 degrees a. 83° and 97° b. 98° and 82° c. 128° and 52° d. 113° and 67° 5 4 d. - 4 5 1 2 a. 0 b. c. 1 d. Undefined 9. cos(-90°) 3 a. 2 b. 0 c. -1 d. Undefined Use the appropriate identity to find the indicated function value. Rationalize the denominator, if applicable. If the given value is a decimal, round your answer to three decimal places. 10. cot , given that tan = 0.3474 a. 2.879 b. 2.872 c. 2.893 d. 2.886 4. A wheel is rotating 720 times per minute. Through how many degrees does a point on 1 the edge of the wheel move in seconds? 4 b. 270° d. 810° Suppose that is in standard position and the given point is on the terminal side of . Give the exact value of the indicated trig function for . 5. (18, 24); Find csc . 5 3 5 4 a. b. c. d. 4 4 3 3 11. tan , given that cot An equation of the terminal side of an angle in standard position is given along with a restriction on x. Find the indicated trigonometric function value of . Do not use a calculator. 6. -3x + y = 0, x 0; Find sin . 10 3 10 a. b. 10 10 d. b. - Evaluate the expression. 8. sin 450° 3. A wheel makes 396 revolutions per minute. How many revolutions does it make per second? a. 13.2 revolutions per second b. 2376 revolutions per second c. 3.96 revolutions per second d. 6.6 revolutions per second c. 3 0; Find csc . 41 4 c. 2. Complementary angles with measures 4x and 5x - 9 degrees a. 84° and 96° b. 44° and 46° c. 11° and 79° d. 46° and 44° a. 72° c. 1080° Last Updated 08/15/2014 = 5 8 a. 5 5 8 b. 8 5 c. 5 5 d. 8 5 5 Use the fundamental identities to find the value of the trigonometric function. 3 12. Find tan , given that sin = and is in 4 quadrant II. 7 a. 9 1 3 c. - 1 3 2 b. d. 5 4 3 7 7 13. Find sec , given that tan quadrant I. 3 a. 2 c. 5 4 14. Find sec , given that tan is in quadrant I. a. -1.1547005 c. 1.2559261 15. Find tan , given that cos is in quadrant II. a. 1.9734303 c. -1.9734303 = 3 and 4 b. 17. Find the exact value of x in the figure. is in 3 7 7 d. - 7 9 28 = 0.57735027 and x b. -1.2559261 d. 1.1547005 a. 14 3 = -0.58778525 and c. b. 1.3763819 d. -1.3763819 28 6 3 b. 28 3 3 d. 14 6 Find the exact value of the expression. 18. cos 150° 3 a. b. 2 16. Find the exact value of x in the figure. c. - 14 3 2 d. - 2 2 2 2 19. sec 210° a. - a. 5 3 c. 7 6 c. b. 7 3 d. 8 3 2 2 3 3 20. cos (-2190°) 3 a. 2 c. 1 2 b. 2 d. - 2 3 3 b. d. - 3 2 1 2 Solve the problem. 21. On a sunny day, a flag pole and its shadow form the sides of a right triangle. If the hypotenuse is 40 meters long and the shadow is 32 meters, how tall is the flag pole? a. 72 m b. 64 m c. 51 m d. 24 m 2 22. To measure the width of a river, a surveyor starts at point A on one bank and walks 74 feet down the river to point B. He then measures the angle ABC to be 23°32'12''. Estimate the width of the river to the nearest foot. See the figure below. 26. The angle of elevation from a point on the ground to the top of a tower is 38° 19 . The angle of elevation from a point 145 feet farther back from the tower is 26° 41 . Find the height of the tower. Round to the nearest foot. a. 2002 ft b. 196 ft c. 211 ft d. 200 ft C Find the exact value without using a calculator. 5 27. csc 3 a. - 3 c. A 74 ft a. 32 ft c. 30 ft B b. 68 ft d. 170 ft 28. sec b. - 2 1 2 d. - -5 4 b. - 2 a. -2 23. An airplane travels at 180 km/h for 5 hr in a direction of 289° from Greenville. At the end of this time, how far west of Greenville is the plane (to the nearest kilometer)? a. 310 km b. 952 km c. 293 km d. 851 km 2 3 3 c. - 2 3 3 d. 2 2 Find the length of an arc intercepted by a central angle in a circle of radius r. Round your answer to 1 decimal place. 24. A ship travels 99 km on a bearing of 35°, and then travels on a bearing of 125° for 129 km. Find the distance from the starting point to the end of the trip, to the nearest kilometer. a. 81 km b. 57 km c. 163 km d. 228 km 29. r = 15.95 ft; = 29 radians a. 3.5 ft c. 0.9 ft 30. r = 116.15 in.; = 162° a. 328.4 in. c. 656.8 in. 25. Find h as indicated in the figure. Round to the nearest foot. b. 1.7 ft d. 5.2 ft b. 164.2 in. d. 104.5 in. 31. Find the distance between City E, 43° N and City F, 74° S. (Round to the nearest kilometer.) a. 3455 km b. 13,069 km c. 13,077 km d. 3463 km 24.9° Assume that the cities lie on the same north-south line and that the radius of the earth is 6400 km. 32. Find the latitude of Winnipeg, Canada if Winnipeg and Austin, TX, 30°N, are 2234 km apart. a. 20°N b. 70°N c. 50°N d. 60°N 59.3° 102 ft a. 68 ft c. 65 ft b. 70 ft d. 62 ft 3 33. A wheel with a 38-inch radius is marked at two points on the rim. The distance between the marks along the wheel is found to be 14 inches. What is the angle (to the nearest tenth of a degree) between the radii to the two marks? a. 19.1° b. 23.1° c. 17.1° d. 21.1° Find the exact circular function value. -5 39. tan 6 34. Two wheels are rotating in such a way that the rotation of the smaller wheel causes the larger wheel to rotate. The radius of the smaller wheel is 3.1 centimeters and the radius of the larger wheel is 17.4 centimeters. Through how many degrees (to the nearest hundredth of a degree) will the larger wheel rotate if the smaller one rotates 140°? a. 24.94° b. 25.94° c. 26.94° d. 24.84° 40. csc = 3 c. 3 2 = 151° a. 1002.1 mi2 c. 501.1 mi2 3 3 d. -2 3 1 2 2 c. - b. - 2 3 3 d. - 3 The figure shows an angle in standard position with its terminal side intersecting the unit circle. Evaluate the indicated circular function value of . 41. Find sin . - 5 12 , 13 13 b. 50.4 ft2 d. 24.1 ft2 b. 25.7 mi2 d. 33.9 mi2 37. Find the measure (in radians) of a central angle of a sector of area 46 square inches in a circle of radius 7 inches. Round to the nearest hundredth. a. 2.82 radians b. 0.94 radians c. 3.76 radians d. 1.88 radians a. 38. A pendulum swings through an angle of 19° each second. If the pendulum is 17 cm in length and the complete swing from right to left lasts 2 seconds, what area is covered by each complete swing? Round to the nearest hundredth. a. 47.92 cm2 b. 191.67 cm2 c. 95.84 cm2 3 b. - radians a. 1107.9 ft2 c. 554.0 ft2 36. r = 19.5 mi, 3 a. - Find the area of a sector of a circle having radius r and central angle . If necessary, express the answer to the nearest tenth. 35. r = 23.0 ft, a. 5 12 c. - d. 5.64 cm2 4 5 13 b. 12 13 d. - 12 13 42. Find csc . Suppose an arc of length s lies on the unit circle x 2 + y2 = 1, starting at point (1, 0) and terminating at the point (x, y). Use a calculator to find the approximate coordinates (x, y). Round coordinates to four decimal places when appropriate. 7 24 ,25 25 a. 25 24 c. - 25 24 43. sec 0.1943 a. 0.1931 c. 0.9812 b. 24 7 d. - 45. s = 7.6 a. (0.9679, 0.2513) b. (-0.2513, -0.9679) c. (-0.2513, 0.9679) d. (0.2513, 0.9679) 25 7 b. 0.1968 d. 1.0192 Find the exact values of s in the given interval that satisfy the given condition. 1 46. [0, 2 ); tan2 s = 3 Use a table or a calculator to evaluate the function. Round to four decimal places. 44. csc 0.2391 a. 0.2368 b. 0.9716 c. 4.2225 d. 1.0293 a. b. c. d. 7 6 6 , 3 3 6 , 2 4 5 , , 3 3 3 , 4 3 , 5 7 11 , , 6 6 6 47. [- , ); 2 cos2 s = 1 7 , , a. , 4 4 4 4 5 b. - 2 2 ,- , , 3 3 3 3 c. - 7 ,,,4 4 4 4 d. - 3 ,- , , 4 4 4 4 48. Let angle POQ be designated . Angles PQR and VRQ are right angles. If = 45°, find the exact length of OQ. a. 2 c. 0 50. Let angle POQ be designated . Angles PQR and VRQ are right angles. If = 27°, find the length of OU accurate to four decimal places. a. 2.2027 c. 1.1223 b. 1 d. 2 2 51. 49. Let angle POQ be designated . Angles PQR and VRQ are right angles. If = 80°, find the length of OQ accurate to four decimal places. = radian per min, t = 13 min 6 a. c. b. 0.8910 d. 0.4540 78 78 Use the formula radians b. 13 6 radian d. 6 radians 13 = t radians to find the value of the missing variable. Give an exact answer unless otherwise indicated. 52. = 9.2302 radians per min, = 13.09 radians (Round to four decimal places when necessary.) a. 1.4182 min b. 0.7051 min c. 22.3202 min d. 120.8233 min a. 0.1736 c. 5.7588 Use the formula v = r to find the value of the missing variable. Give an exact answer unless otherwise indicated. 53. v = 16 ft per sec, r = 3.3 ft (Round to four decimal places when necessary.) a. 0.952 radian per sec b. 5.0929 radians per sec c. 0.2063 radian per sec d. 4.8485 radians per sec b. 0.9848 d. 5.6713 6 a. Use the formula s = r t to find the value of the missing variable. Give an exact answer. 54. s = 3 a. m, r = 7 m, t = 32 sec 672 radian per sec b. 672 radians per sec 21 radians per sec c. 32 d. 32 radian per sec 21 55. A wheel is rotating at 8 radians/sec, and the wheel has a 38-inch diameter. To the nearest foot, what is the speed of a point on the rim in ft/min? a. 755 ft/min b. 765 ft/min c. 760 ft/min d. 750 ft/min b. 56. A wheel with a 22-inch diameter is turning at the rate of 58 revolutions per minute. To the nearest inch, what is the speed of a point on the rim in in./min? a. 4055 in./min b. 4009 in./min c. 4062 in./min d. 4016 in./min Graph the function. 1 57. y = sin x 4 c. 7 d. b. c. 58. y = cos 1 x 3 d. a. 8 59. y = 2 + sin x + d. 3 a. Graph the function over a one-period interval. 60. y = 4 + 4 sin(x - ) b. a. c. 9 b. + tan )2 = 63. (sec 1 + sin 1 - sin MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use Identities to find the exact value. 64. cos (-75°) c. a. 2- 6 c. 24 6 64 b. 2 d. - 6 - 2 65. cos 255° 66. cos a. 6- 2 c. 64 2 a. 24 6 c. 6+ 4 2 b. 2- 6 d. 24 6 b. - 64 d. 64 12 d. 2 1 , with s in 3 67. Find cos(s + t) given that cos s = quadrant I, and sin t = - 2 1 , with t in quadrant 2 IV. 3+2 2 6 a. c. 2 6-1 6 3-2 2 6 b. d. 2 6+1 6 68. Find cos(s - t) given that cos s = SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. quadrant II, and cos t = Verify that each equation is an identity. cos 61. sec + tan = 1 - sin quadrant IV. 56 a. 65 62. c. - sec - 1 tan = tan sec + 1 10 56 65 4 , with s in 5 5 , with t in 13 b. 16 65 d. - 16 65 69. sin 15° 6+ 4 a. c. - 2 64 71. sin b. 2 70. tan 75° a. - 3 - 2 c. - 3 + 2 64 d. 6+ 4 - Find the exact value of the expression using the provided information. 1 76. Find sin(s - t) given that cos s = , with s in 3 2 2 quadrant I, and sin t = quadrant IV. 3+2 2 a. 6 3-2 3+2 b. d. c. 11 12 a. 6+ 4 2 c. 64 2 b. d. - 64 2 - 6+ 4 2 a. 6 c. 64 2 73. tan 345° a. 3 + 2 c. - 3 - 2 75. tan a. 2 b. d. 2+2 6 4 c. - 6 c. 64 2 3 3 171 221 b. 21 221 d. 171 221 24 25 b. c. 7 25 d. - =- a. - 1 d. 2 b. 2 d. 2 + 5 , with s in 13 15 , with t in 17 a. 79. sin 3+1 2 c. 11 12 a. -2 c. -2 + 2 6+1 6 Use identities to find the indicated value for each angle measure. 3 Find cos(2 ). 78. sin = , cos > 0 5 b. - 3 + 2 d. 3 - 2 b. d. quadrant II, and sin t = Use a sum or difference identity to find the exact value. 7 74. sin 12 6+ 4 2 6-1 6 quadrant II. 21 a. 221 2+ 4 3-2 2 6 b. 77. Find sin(s + t) given that cos s = - 7 72. sin 12 24 1 , with t in 2 4 , 5 2 7 25 < 1 5 <2 Find cos(2 ). b. - 24 25 7 25 d. 24 25 7 25 Find the exact value by using a half-angle identity. 80. sin 22.5° 1 1 2+ 2 2- 2 a. b. 2 2 3 3 c. 11 1 2 2+ 2 d. - 1 2 2- 2 81. cos 75° 1 a. 2 c. - 21 2 82. tan 75° a. -2 c. -2 + 83. sin 84. cos 1 b. 2 3 2- 3 d. 2+ 1 2 2+ 88. 2 sin2 x = sin x 2 , a. 3 3 3 3 b. c. 3 3 b. 2 d. 2 + 3 3 a. - 1 2 2+ 3 b. 1 2 2+ 3 c. - 1 2 2- 3 d. 1 2 2- 3 a. b. a. - 1 2 2+ 3 b. 1 2 2- 3 c. c. - 1 2 2- 3 d. 1 2 2+ 3 d. b. -2 - 3 d. 2 - 3 a. 2 3+2 5 b. 4 3-3 10 c. -25 3-48 100 d. 4 3+3 10 3 2 , , 2 3 3 6 , b. d. 6 2 6 6 + 2n , 5 + 2n 6 + 2n , 5 3 + 2n , + 2n 6 2 + 2n , 3 + 2n 2 + 2n , 5 3 + 2n , + 2n 6 2 a. 2 7 7 13 5 19 , , , , , 12 6 3 12 6 12 3 12 , b. {0} 3 2 2 , =1 Solve the equation for solutions in the interval [0, 2 ). 3 91. sin 4x = 2 c. , 4 5 6 a. {51.8° + 360°n, 128.2° + 360°n} b. {70.5° + 360°n, 180° + 360°n, 289.5° + 360°n} c. {49.8° + 360°n, 130.2° + 360°n, 229.8° + 360°n, 310.2° + 360°n} d. {103.2° + 360°n, 145.2° + 360°n, 283.2° + 360°n, 325.2° + 360°n} Solve the equation for exact solutions over the interval [0, 2 ). 87. cos2 x + 2 cos x + 1 = 0 c. {2 } , 90. 3 cos2 + 2 cos Give the exact value of the expression. 3 3 86. cos arcsin + arccos 5 2 } 5 6 Solve the equation (x in radians and in degrees) for all exact solutions where appropriate. Round approximate answers in radians to four decimal places and approximate answers in degrees to the nearest tenth. 89. 2 sin2 x + sin x = 1 5 12 a. 2 , d. 0, , 5 12 85. tan 165° a. 2 + 3 c. -2 + 3 6 7 4 4 d. 0, 12 , , 5 4 4 , 92. cos 2x = a. 98. sin-1 x + tan-1 x = 0 3 3 , a. 4 4 2 - cos 2x b. 3 5 7 , , 4 4 4 4 c. 9 7 15 , , , 8 8 8 8 , d. 0, c. - 2 4 , , 3 3 100. A = 37°10' B = 26°10' a = 36.2 a. C = 117°40', b = 53.5, c = 26.4 b. C = 117°40', b = 26.4, c = 53.5 c. C = 116°40', b = 26.4, c = 53.5 d. C = 116°40', b = 53.5, c = 26.4 Solve the equation for solutions over the interval [0, 2 ). Write solutions as exact values or to four decimal places, as appropriate. x x 94. sin + cos = 2 2 2 b. c. d. 4 95. tan 2x + sec 2x = 2 a. {0.6435, 6.9267} c. {1.1072, 4.2488} } Find the area of triangle ABC with the given parts. Round to the nearest tenth when necessary. 101. A = 38.2° b = 14.2 in. c = 4.4 in. a. 26.6 in.2 b. 24.6 in.2 2 b. {2.2143, 8.4975} d. {0.3218, 3.4634} c. 17.3 in.2 Solve the equation for exact solutions. 96. arcsin 2x + 2 arccos x = 102. A = 25°50' b = 17.5 m c = 8.9 m 3 3 , 2 2 a. 1 b. - c. 0 3 3 , d. 4 4 a. 67.8 m2 c. 17 m2 c. - b. 3 3 , 4 4 d. 19.3 in.2 b. 33.9 m2 d. 69.8 m2 Solve the problem. 103. Two tracking stations are on the equator 173 miles apart. A weather balloon is located on a bearing of N 42°E from the western station and a bearing of N 12°E from the eastern station. How far, to the nearest mile, is the balloon from the western station? Round to the nearest mile. a. 271 mi b. 280 mi c. 338 mi d. 347 mi 97. arcsin x + 2 arctan x = a. 0 d. 1 Solve the triangle. Round to the nearest tenth when necessary or to the nearest minute as appropriate. 99. B = 40.9° C = 114.5° b = 17.8 a. A = 22.6°, a = 26.7, c = 13.3 b. A = 24.6°, a = 13.3, c = 26.7 c. A = 22.6°, a = 24.7, c = 11.3 d. A = 24.6°, a = 11.3, c = 24.7 Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree. 93. sin 2 = cos a. {15°, 165°, 195°, 345°} b. {30°, 90°, 150°, 270°} c. {0°, 120°, 180°, 240°} d. {105°, 165°, 285°, 345°} a. {0 , } 3 3 , 2 2 b. 0 3 3 , 2 2 d. 1 13 104. An airplane is sighted at the same time by two ground observers who are 2 miles apart and both directly west of the airplane. They report the angles of elevation as 13° and 20°. How high is the airplane? Round to the nearest hundredth of a mile. a. 1.92 mi b. 1.26 mi c. 0.68 mi d. 0.45 mi 108. C = 118.5° a = 7.3 m b = 11.7 m a. c = 22.3 m, A = 20.8°, B = 40.7° b. c = 16.5 m, A = 22.8°, B = 38.7° c. No triangle satisfies the given conditions. d. c = 19.4 m, A = 24.8°, B = 36.7° 109. a = 18.9 cm b = 15.7 cm c = 14.9 cm Find the missing parts of the triangle. 105. B = 19.7° b = 12.80 a = 18.99 If necessary, round angles to the nearest tenth and side lengths to the nearest hundredth. a. A1 = 30.01°, C1 = 130.29°, c1 = 28.96; a. 123 cm2 c. 114 cm2 b. 117 cm2 d. 120 cm2 110. Two ships leave a harbor together traveling on courses that have an angle of 129° between them. If they each travel 502 miles, how far apart are they (to the nearest mile)? a. 1812 mi b. 432 mi c. 40 mi d. 906 mi A2 = 149.99°, C2 = 10.31°, c2 = 6.8 b. A = 149.99°, C = 10.31°, c = 6.8 c. no such triangle d. A = 30.01°, C = 130.29°, c = 28.96 106. C = 35°30' a = 18.76 c = 16.15 If necessary, round side lengths to the nearest hundredth. a. A1 = 42°25', B1 = 102°05', b1 = 27.2; 111. Two airplanes leave an airport at the same time, one going northwest (bearing 135°) at 417 mph and the other going east at 338 mph. How far apart are the planes after 4 hours (to the nearest mile)? a. 2193 mi b. 2793 mi c. 698 mi d. 2325 mi A2 = 137°35', B2 = 6°55', b2 = 3.35 b. A = 42°25', B = 102°05', b = 25.19 c. no such triangle d. A1 = 102°05', B1 = 42°25', b1 = 17.52; Find the magnitude and direction angle (to the nearest tenth) for each vector. Give the measure of the direction angle as an angle in [0,360°]. 112. 2, 2 a. 2 2; 45° b. 2 2; 225° c. 2; 225° d. 4; 45° A2 = 6°55', B2 = 137°35', b2 = 26.19 Find the missing parts of the triangle. Round to the nearest tenth when necessary or to the nearest minute as appropriate. 107. C = 106.2° a = 6.3 km b = 8.1 km a. c = 11.6 km, A = 31.4°, B = 42.4° b. c = 17.4 km, A = 29.4°, B = 44.4° c. c = 14.5 km, A = 33.4°, B = 40.4° d. No triangle satisfies the given conditions. 113. -6 2, -6 2 a. 12 2; 135° c. 12; 45° b. 12; 225° d. 24; 45° Two forces act at a point in the plane. The angle between the two forces is given. Find the magnitude of the resultant force. 114. forces of 28.1 and 43.2 lb, forming an angle of 76.5° (round to the nearest pound) a. 2089 lb b. 46 lb c. 57 lb d. 71 lb 14 Find the dot product for the pair of vectors. 115. 10, -12 , -8, -4 a. 48 b. -32 c. -80 d. -128 116. 5i - 4j, 8i + j a. 36 c. 44 Find the product. Write the product in rectangular form, using exact values. 124. [4(cos 30° + i sin 30°)] [6(cos 330° + i sin 330°)] a. 12 3 + 12i b. -12 + 12 3i c. 24 d. 24i b. -27 d. 0 Find the quotient and write in rectangular form. First convert the numerator and denominator to trigonometric form. 5(cos 200° + i sin 200°) 125. 4(cos 50° + i sin 50°) Find the angle between the pair of vectors to the nearest tenth of a degree. 117. 3, 7 , 9, -6 a. 40.3° b. 50.3° c. 100.5° d. 110.5° 118. 9i - 5j, 2i - 9j a. 114.4° c. 44.7° b. 48.4° d. 126.9° 126. 5 3 5 + i 8 8 b. -2 + 2 3i c. - 1 3 i + 2 2 d. -10 + 10 3i 8(cos 90 + i sin 90) 3(cos 30 + i sin 30) Determine whether the pair of vectors is orthogonal. 119. -2, 6 , -8, -5 a. Yes b. No 120. 3i - 2j, -8i - 12j a. Yes a. - a. 8 + 8 3i c. b. No 4 4 3 i + 3 3 b. 1 + d. 3i 5 5 3 i + 2 2 Find the given power. Write answer in rectangular form. 127. (- 3 + i)6 121. Two forces of 498 newtons and 257 newtons act at a point. The resultant force is 578 newtons. Find the angle between the forces. a. 85.5° b. 80.3° c. 94.5° d. 164.0° a. 64i c. -64 3 + 64i 128. - 122. A force of 621 lb is required to pull a boat up a ramp inclined at 19° with the horizontal. How much does the boat weigh? a. 2494 lb b. 587 lb c. 1907 lb d. 602 lb 1 3 10 i 2 2 a. 1 3 i + 2 2 c. - 123. Two boats are pulling a disabled vessel toward the landing dock with forces of 950 lb and 940 lb. The angle between the forces is 21.8°. Find the direction and magnitude of the equilibrant. a. 1856 lb at an angle of 10.8° with the 950-lb force b. 1856 lb at an angle of 79.2° with the 940-lb force c. 186 lb at an angle of 169.2° with the 950-lb force d. 1856 lb at an angle of 169.2° with the 950-lb force b. 64 - 64 3i d. -64 1 3 i + 2 2 b. d. - Find all specified roots. 129. Cube roots of 1. 1 3 1 3 i, - + i a. 1, + 2 2 2 2 b. 1, c. 1, 1 3 1 3 i, - i + 2 2 2 2 1 3 1 3 i, - i 2 2 2 2 d. -1, 1 15 1 3 i 2 2 1 3 i 2 2 130. Cube roots of i. 3 1 3 1 + i, + i, i a. 2 2 2 2 b. 3 1 3 1 - i, - i, i 2 2 2 2 c. 3 1 3 1 - i, - i, -i 2 2 2 2 d. 3 1 3 1 + i, + i, -i 2 2 2 2 16 Answer Key Testname: GENERAL TRIG REVIEW 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. d b d c a b c c b a d b c d d b c c d b d a d c c d d b b a b c d a c c d c d b b c d c d d d d a a 17 Answer Key Testname: GENERAL TRIG REVIEW 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. b a d a c b b b a b 61. sec 62. + tan = 1 cos + sin cos sec - 1 sec - 1 sec = · tan tan sec 63. (sec = 1 + sin cos = 1 + sin cos · 1 - sin 1 - sin +1 sec2 - 1 tan2 = = + 1 tan (sec + 1) tan (sec + tan )2 = sec2 + 2 sec tan + tan2 = 1 cos2 + (1 + sin )2 1 + sin = (1 - sin )(1 + sin ) 1 - sin 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. = b d c a c b d c b d a c d c c a b a d b b c b a d d b a c b 18 2 sin cos2 1 - sin2 cos2 cos = = cos (1 - sin ) cos (1 - sin ) 1 - sin + 1) + = tan sec + 1 sin2 cos2 = 1 + 2 sin cos2 + sin2 = (1 + sin )2 = 1 - sin2 Answer Key Testname: GENERAL TRIG REVIEW 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. d d c d b d c d b c b a a a b c d b a b c b a c b b a a c d c a c d d b d 19