Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Laboratory Measurement of CO2(2) + O Temperature-Dependent Vibrational Energy Transfer Karen J. 1 Castle, 1 Simione, Michael Eunsook S. 2 Hwang, and James A. Dodd Air Force Research Laboratory, Space Vehicles Directorate, Hanscom Air Force Base, MA 01731 USA 1Department of Chemistry, Bucknell University, Lewisburg, PA 17837 USA 2Stewart Radiance Laboratory, Bedford, MA 01730 USA Temperature Dependence of kO(2) Experimental Setup Motivation • CO2(2) - O vibrational energy transfer (VET) key process in the upper atmosphere Literature Predictions • Analysis of ATMOS data suggests negligible or weakly negative temperature dependence for kO(2) • Implicated in thermospheric global cooling • Long-term effects on thermospheric temperature, density structure: satellite drag and longevity • M. Lopez-Puertas et al., J. Geophys. Res. 97, 20469 (1992) • Recent quantum mechanical treatment predicts kO(2) exp(T-1/3) for O(3PJ=0,1), and a dominant temperatureindependent kO(2) for O(3PJ=2) • Process: • CO2(0000) + O CO2(0110) + O • CO2(0110) CO2(0000) + 15 mm • Overall, kO(2) T1/2 dependence is predicted • Discrepancy between laboratory and field data-derived measurements of kO(2) • Laboratory: (1.2-1.8) 10-12 cm3s-1 (see below) • Field data: (36) 10-12 cm3s-1 CO2 Spectroscopy a) Figure from M.P. de laraCastells, M.I. Hernandez, G. Delgado-Barrio, P. Villareal, and M. LopezPuertas, Mol. Phys. 105, 1171 (2007) b) 3000 1 01 1 * 2.5e-19 1 2.0e-19 0 -1 Reference 300 Shved et al., 1991 1500 0 10 0 0 02 0 * * 2 02 0 * 1000 1 01 0 * 500 1.2 0.2 Pollock et al., 1993; Scott et al., 1993 295 0 0 0 * 0 (00 0) R(36) 1.0e-19 2 (02 0) P(20) 1.8 0.3 300-358 Khvorostovskaya et al., 2002 318 Castle et al., 2006 (1000) P(22) 2 (02 0) P(19) ** 0 (00 0) P(29) 5.0e-20 Laboratory Result 1 2 2307.0 3 2307.2 2307.4 2307.6 2307.8 2308.0 2308.2 2308.4 2308.6 -1 CO2(mn p) l Value a) Nine lowest-energy CO2 vibrational levels, plus the (0111) level, plotted as a function of vibrational angular momentum l. Two v3 (v3+1) diode laser absorption transitions are indicated. Populations labeled with the asterisk (*) have been detected in this work b) Diode laser absorption spectrum of CO2 in the 2308 cm-1 region. The lower vibrational states are labeled and all transitions are v3 (v3+1). The single * denotes the 16O13C16O isotope while the double ** indicates the 18O12C16O isotope Experimental Approach Population Time Evolution 8 • Variable temperature measurements • Cold temperature – use vacuum-jacketed cell with solvent or liquid nitrogen coolant • High temperature – wrap cell with heating tape 1.5 1.0 0.5 150 200 250 300 350 400 450 500 4 2 • Pulsed, fourth-harmonic Nd:YAG laser excitation 0 CO2 (0110)-(0111) P(36) TDLAS signal for five different O-atom densities at a cell temperature of 250 K. The green lines represent the predicted population time evolution from a global nonlinear least squares fit 8 6 4 2 Relative Intensity • Use intense v3 (v3+1) transitions 2.0 kO(2) as a function of reaction cell temperature. The rate coefficient exhibits a modest negative temperature dependence. Error bars of 15% have been assigned to account for uncertainty in various experimental parameters. Temperature (K) 6 • 0.15-0.30% CO2, 0.05-1.0% O3, balance Xe • CW diode laser detection of time-dependent CO2 vibrational level populations 2.5 0.0 100 • Slow-flowing gas mixture with pTOT = 6-12 Torr • O3 + 266 nm O(1D) + O2(1g) • Xe quenches O(1D), minimizes energy transfer to CO2 • Stimulates 5-50 K temperature jump 3.0 Wavenumber (cm ) l 1.4 0.2 ** 0 (00 0) P(30) 0.0 00 0 * 1.5e-19 3 -1 1.5 0.5 Temp (K) * 3 03 0 cm s ) cm3s-1) 11 0 1 03 0 -12 kO(2) (10-12 1 2000 Intensity (arb. units) 00 1 * Rate Constant (10 2500 Term Energy (cm ) Laboratory Measurements of kO(2) Near 300 K (01 0) P(33) 0 8 6 4 2 0 8 6 4 2 0 Summary • A new apparatus has been constructed using diode laser detection to study VET in CO2-O collisions in the 150-500 K range • The measured rate coefficients show a negative temperature dependence with kO(2) values ranging from 2.310-12 cm3s-1 (165 K) to 1.310-12 cm3s-1 (475 K) Acknowledgment 8 6 4 2 0 0 1000 2000 3000 Delay Time (ms) 4000 5000 NASA Geospace Sciences The Camille & Henry Dreyfus Foundation Bucknell University