Download Simulation of submicron thermal transport

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Simulation of Nanoscale
Thermal Transport
Laurent Pilon
UCLA
Mechanical and Aerospace Engineering Department
Copyright© 2003
Motivations
• Macroscopic laws break down when:
– The length of the system is comparable to the mean free
path of the heat carrier
– The time scale of the physical system is smaller than
the relaxation time of the heat carriers
• Experimentation at submicron scale
poses great challenges
 Numerical Simulations have become critical
for basic understanding and design purposes
Phonon Transport Equation
• Equation for Phonon Radiative Transfer
– The transport of phonons is governed by the Boltzmann
transport equation (BTE)
– The so-called Equation for Phonon Radiative Transfer
(EPRT) is an alternative formulation of the BTE
T2
Dielectric
thin film
ℓ
ℓ
T1
L
I 
I0  I
 v  I 
t
s 
advection
scattering
(EPRT)
Method of Characteristics
Along the heat carrier pathline:
dx
 u x, y, z, 
dt
dy
 vx, y, z, 
dt
dz
 w x, y, z, 
dt
the EPRT simplifies
Phonon pathline
DI  I0  I

Dt
s 
 Transform a PDE into an ODE solved along the phonon pathlines
The temperature is
recovered from:
D
T 4    I  cos  sin ddd
0 4
Numerical Method
t+Dt
(xi,yj+1,zk+1)
(xi+1,yj+1,zk+1)
pathline
(xi,yj,zk+1)
t
(xi+1,yj,zk+1)
(xn,yn,zn)
z
y
(xi+1,yj+1,zk)
x
(xi,yj,zk)
+ Pre-specified grid
+ Backward in time
+ Transient and steady state
(xi+1,yj,zk)
+ Very accurate
+ Multidimensional problems
+ Compatible with other methods
Transient Ballistic Transport
Dimensionless temperature, T*
0.5
Numerical solution
Exact solution
t*=1
0.4
I 
 v  I  0
t
Black surfaces
z
0.3
T2
Dielectric thin film
0.2
0
T (z ) 
*
0.0
0.0
0.2
0.4
0.6
0.8
Dimensionless coordinate, z*=z/L
1.0
1mm
T1
t*=0.1
0.1
q
*
T 4  T24
T14  T24
Steady-State Ballistic Transport
20
Discontinuity
Temperature (K)
19
I 
 v  I  0
t
18
17
Black surfaces
16
15
z
14
13
Analytical solution
12
Present numerical method
11
Monte Carlo (Mazumder and Majumdar, 2001)
T2=10 K
0
10
T1=20 K
T 
*
0
50
100
150
1mm
Dielectric thin film
200
250
300
350
Distance along the film (nm)
400
q
T 4  T24
T14  T24
Conduction Across a Diamond
Thin-Film
Dimensionless temperature, T+
1.00
Fourier’s law
I 
I0  I
 v  I 
t
s 
0.75
Black surfaces
z
T2=300 K
100 nm
0.50
1 mm
1mm
Diamond thin film
10 mm
0.25
0.00
0.00
0.25
0.50
0.75
Dimensionless location, z*=z/L
1.00
0
T1=301 K
T 
T  T2
T1  T2
q
SiO2 Rod with Specularly
Reflecting Boundaries
1.0
10 m m
Dimensionless Temperature, T*
0.9
Fourier’s law
I I
I 
 v  I  0
t

1m m
0.8
100 nm
0.7
10 nm
Reflecting Boundaries
0.6
1 mm
T1
0.5
0.4
L
0.3
(2D problem)
0.2
T 
*
0.1
0.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Dimensionless Distance, y*
0.9
1.0
T 4  T24
T14  T24
T2