Download 1.3 Notes ppt - Vista Peak Prep Math

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Bootstrapping (statistics) wikipedia , lookup

History of statistics wikipedia , lookup

Time series wikipedia , lookup

Transcript
+ Do Now:
A recent study by the Environment Protection Agency
measured the gas mileage for 30 models of cars. The
results are shown below:
EPA Measured MPG for 30 Cars
36.3
32.7
40.5
36.2
38.5
36.3
41
37
37.1
39.9
41
37.3
36.5
37.9
39
36.8
31.8
37.2
40.3
36.9
36.7
33.6
34.2
35.1
39.7
39.3
35.8
34.5
39.5
36.9
Construct a stemplot and a histogram to display the
data. Then describe the data using SOCS
+
Check yourself!!!
(pull out Ch. 1 LO sheet)

Learning Target Check: Rank yourself on the following
objectives.

______ I can construct and interpret a dotplot or stemplot

______ I can construct and interpret a histogram

______ I can describe the shape, center, and spread of a
distribution

______ I can identify outliers of a distribution
+
Chapter 1: Exploring Data
Section 1.3 – Part 1
Describing Quantitative Data with Numbers
The Practice of Statistics, 4th edition - For AP*
STARNES, YATES, MOORE
+
Chapter 1
Exploring Data
 Introduction:
Data Analysis: Making Sense of Data
 1.1
Analyzing Categorical Data
 1.2
Displaying Quantitative Data with Graphs
 1.3
Describing Quantitative Data with Numbers
+ Section 1.3
Describing Quantitative Data with Numbers
Learning Objectives
After this section, you should be able to…

MEASURE center with the mean and median

MEASURE spread with standard deviation and interquartile range

IDENTIFY outliers

CONSTRUCT a boxplot using the five-number summary

CALCULATE numerical summaries with technology
+
Mean as a “balancing point”
In this activity, you will investigate an
interesting property of the mean
+
 Stack
all 5 pennies on the 6-inch mark on your ruler. Place
your pencil under the ruler to make a “seesaw” on the
desk. Move the pencil until the ruler balances.
 What
is the relationship between the location of the pencil
and the mean of the five data values: 6, 6, 6, 6, 6?
+
 Move
one penny off the stack to the 8-in mark on
your ruler. Now move one other penny so that the
ruler balances again without moving the pencil.
 Where
did you put the other penny? What is the
mean of the five data values represented by the
pennies now?
 What
is the relationship between the location of the
pencil and the mean of the five data values?
+
 Move
one more penny off the stack to the 2-inch
mark of your ruler. Now move both remaining
pennies from the 6-inch mark so that the ruler still
balances with the pencil in the same location.
 Is
the mean of the data values still 6?
 Why
is the mean sometimes called the “balancing
point” of a distribution?
+
 Extension:
where would the median of the
stack of pennies be in each scenario?
Use the data below to calculate the mean and median of the
commuting times (in minutes) of 20 randomly selected New
York workers.
Example, page 53
10
30
5
25
40
20
10
15
30
20
15
20
85
15
65
15
60
60
40
45
10  30  5  25  ... 40  45
x
 31.25 minutes
20
0
1
2
3
4
5
6
7
8
5
005555
0005
Key: 4|5
00
represents a
005
005
5
New York
worker who
reported a 45minute travel
time to work.
Describing Quantitative Data

Center: Mean vs. Median
+
 Measuring
20  25
M
 22.5 minutes
2
If both the mean and the median
are measures of center – why
are they so different???

The mean and median measure center in different ways, and
both are useful.

Don’t confuse the “average” value of a variable (the mean) with its
“typical” value, which we might describe by the median.
Comparing the Mean and the Median
The mean and median of a roughly symmetric distribution are
close together.
If the distribution is exactly symmetric, the mean and median
are exactly the same.
In a skewed distribution, the mean is usually farther out in the
long tail than is the median.
+
Comparing the Mean and the Median
Describing Quantitative Data


A measure of center alone can be misleading.
A useful numerical description of a distribution requires both a
measure of center and a measure of spread.
How to Calculate the Quartiles and the Interquartile Range
To calculate the quartiles:
1)Arrange the observations in increasing order and locate the
median M.
2)The first quartile Q1 is the median of the observations
located to the left of the median in the ordered list.
3)The third quartile Q3 is the median of the observations
located to the right of the median in the ordered list.
The interquartile range (IQR) is defined as:
IQR = Q3 – Q1
Describing Quantitative Data

Spread: The Interquartile Range (IQR)
+
 Measuring
and Interpret the IQR
+
 Find
Travel times to work for 20 randomly selected New Yorkers
10
30
5
25
40
20
10
15
30
20
15
20
85
15
65
15
60
60
40
45
5
10
10
15
15
15
15
20
20
20
25
30
30
40
40
45
60
60
65
85
Q1 = 15
M = 22.5
Q3= 42.5
IQR = Q3 – Q1
= 42.5 – 15
= 27.5 minutes
Interpretation: The range of the middle half of travel times for the
New Yorkers in the sample is 27.5 minutes.
Describing Quantitative Data
Example, page 57
In addition to serving as a measure of spread, the
interquartile range (IQR) is used as part of a rule of thumb
for identifying outliers.
Definition:
The 1.5 x IQR Rule for Outliers
Call an observation an outlier if it falls more than 1.5 x IQR above the
third quartile or below the first quartile.
Example, page 57
In the New York travel time data, we found Q1=15
minutes, Q3=42.5 minutes, and IQR=27.5 minutes.
0
1
2
For these data, 1.5 x IQR = 1.5(27.5) = 41.25
3
Q1 - 1.5 x IQR = 15 – 41.25 = -26.25
4
Q3+ 1.5 x IQR = 42.5 + 41.25 = 83.75
5
Any travel time shorter than -26.25 minutes or longer than 6
7
83.75 minutes is considered an outlier.
8
5
005555
0005
00
005
005
5
Describing Quantitative Data

Outliers
+
 Identifying
+
Five-Number Summary

The minimum and maximum values alone tell us little about
the distribution as a whole. Likewise, the median and quartiles
tell us little about the tails of a distribution.

To get a quick summary of both center and spread, combine
all five numbers.
Definition:
The five-number summary of a distribution consists of the
smallest observation, the first quartile, the median, the third
quartile, and the largest observation, written in order from
smallest to largest.
Minimum
Q1
M
Q3
Maximum
Describing Quantitative Data
 The

The five-number summary divides the distribution roughly into
quarters. This leads to a new way to display quantitative data,
the boxplot.
How to Make a Boxplot
•Draw and label a number line that includes the
range of the distribution.
•Draw a central box from Q1 to Q3.
•Note the median M inside the box.
•Extend lines (whiskers) from the box out to the
minimum and maximum values that are not outliers.
+
Boxplots (Box-and-Whisker Plots)
Describing Quantitative Data

a Boxplot
+
 Construct
Consider our NY travel times data. Construct a boxplot.

10
30
5
25
40
20
10
15
30
20
15
20
85
15
65
15
60
60
40
45
5
10
10
15
15
15
15
20
20
20
25
30
30
40
40
45
60
60
65
85
Min=5
Q1 = 15
M = 22.5
Q3= 42.5
Max=85
Recall, this is
an outlier by the
1.5 x IQR rule
Describing Quantitative Data
Example
+
Chapter 1: Exploring Data
Section 1.3 – Part 2
Describing Quantitative Data with Numbers
The Practice of Statistics, 4th edition - For AP*
STARNES, YATES, MOORE

The most common measure of spread looks at how far each
observation is from the mean. This measure is called the
standard deviation. Let’s explore it!
Consider the following data on the number of pets owned by
a group of 9 children.
1) Calculate the mean.
2) Calculate each deviation.
deviation = observation – mean
deviation: 1 - 5 = -4
deviation: 8 - 5 = 3
x =5
Describing Quantitative Data

Spread: The Standard Deviation
+
 Measuring
Spread: The Standard Deviation
(xi-mean)
1
1 - 5 = -4
(-4)2 = 16
3
3 - 5 = -2
(-2)2 = 4
3) Square each deviation.
4
4 - 5 = -1
(-1)2 = 1
4) Find the “average” squared
deviation. Calculate the sum of
the squared deviations divided
by (n-1)…this is called the
variance.
4
4 - 5 = -1
(-1)2 = 1
4
4 - 5 = -1
(-1)2 = 1
5
5-5=0
(0)2 = 0
7
7-5=2
(2)2 = 4
8
8-5=3
(3)2 = 9
9
9-5=4
(4)2 = 16
5) Calculate the square root of the
variance…this is the standard
deviation.
Sum=?
“average” squared deviation = 52/(9-1) = 6.5
Standard deviation = square root of variance =
Describing Quantitative Data
(xi-mean)2
xi
+
 Measuring
Sum=?
This is the variance.
6.5  2.55
Spread: The Standard Deviation
The standard deviation sx measures the average distance of the
observations from their mean. It is calculated by finding an average of
the squared distances and then taking the square root. This average
squared distance is called the variance.
(x1  x ) 2  (x 2  x ) 2  ... (x n  x ) 2
1
variance = s 

(x i  x ) 2

n 1
n 1
2
x
1
2
standard deviation = sx 
(x

x
)

i
n 1
Describing Quantitative Data
Definition:
+
 Measuring

We now have a choice between two descriptions for center
and spread

Mean and Standard Deviation

Median and Interquartile Range
Choosing Measures of Center and Spread
•The median and IQR are usually better than the mean and
standard deviation for describing a skewed distribution or a
distribution with outliers.
•Use mean and standard deviation only for reasonably
symmetric distributions that don’t have outliers.
•NOTE: Numerical summaries do not fully describe the
shape of a distribution. ALWAYS PLOT YOUR DATA!
+
Choosing Measures of Center and Spread
Describing Quantitative Data

+
Practicing Standard Deviation

Let’s assume that your bag of Skittles is a
representative sample of the population of Skittles.

Count the number of orange Skittles, as well as the total
number of Skittles.

Record your data on the board.

Find the mean.

Find the standard deviation.

Overall how would you describe our data? What is the
best number summary to use and why?
Choosing a Number Summary
+



5 Number Summary

Mean and Standard Deviation

Not resistant to outliers.

Can ONLY be used with
symmetric distributions without
outliers.
Resistant to outliers
Okay to use with skewed data
and with outliers.
Number summaries can not replace a graph of a
distribution…they do not describe its shape. Always plot
your data.
+ Section 1.3
Describing Quantitative Data with Numbers
Summary
In this section, we learned that…

A numerical summary of a distribution should report at least its
center and spread.

The mean and median describe the center of a distribution in
different ways. The mean is the average and the median is the
midpoint of the values.

When you use the median to indicate the center of a distribution,
describe its spread using the quartiles.

The interquartile range (IQR) is the range of the middle 50% of the
observations: IQR = Q3 – Q1.
+ Section 1.3
Describing Quantitative Data with Numbers
Summary
In this section, we learned that…

An extreme observation is an outlier if it is smaller than
Q1–(1.5xIQR) or larger than Q3+(1.5xIQR) .

The five-number summary (min, Q1, M, Q3, max) provides a
quick overall description of distribution and can be pictured using a
boxplot.

The variance and its square root, the standard deviation are
common measures of spread about the mean as center.

The mean and standard deviation are good descriptions for
symmetric distributions without outliers. The median and IQR are a
better description for skewed distributions.
+
Looking Ahead…
In the next Chapter…
We’ll learn how to model distributions of data…
•
Describing Location in a Distribution
•
Normal Distributions
+ Do Now:
Consider the following stemplot of the lengths of time
(in seconds) it took student to complete a logic puzzle.
Use it to answer the following questions (note: 2|2 = 22
seconds):
Based only on the plot,
1
58
how does the mean
2
23
compare to the median?
2
677778888999
Calculate/interpret the
3
2344
mean and median. Which
3
68
measure of center would
4
011223
be the more appropriate
4
6
summary of the center of
5
00
this distribution? Why?