Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Radiation testing of electronic components for space applications Véronique FERLET-CAVROIS ESA / ESTEC INFN Laboratori Nazionali di Legnaro 18/04/2013 ESA UNCLASSIFIED – For Official Use Few dates 31 January 1958: launch of Explorer I, first US satellite, built by JPL; carries a Geiger counter proposed by J. A. Van Allen discovery of the Van Allen belts, confirmed by Explorer III (March 1958) and Sputnik III (May 1958) first scientific output of the Space Age 10 July 1962: launch of Telstar, built by the Bell Telephone Labs with AT&T funds and NASA support; first active telecom satellite: live television one day before (9 July 1962): Starfish 1Mt US nuclear test, electrons injected in the radiation belts, extremely high radiation levels End of Oct. – beginning of Nov. 1962: USSR nuclear tests 21 February 1963: early loss of Telstar; first spacecraft loss due to radiation effects 1962-1963: 10 satellites successively failed (dose and displacement damage) Exo-atmospheric tests banned in 1967 [R. Ecoffet, TNS June 2013] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 2 ESA UNCLASSIFIED – For Official Use Few dates (cont.) 1975: [Binder] first reported “single event effect” SEE anomalies; unexpected triggering in bipolar digital circuits due to cosmic rays 1978 – 1985: SEUs in Pioneer 12 (Venus), in a 1024 bit PMOS shift register SEU example in the OBC of Spot1-2-3; Half of these SEUs lead to operational problems, including switching the satellite to safe mode. [R. Ecoffet, TNS June 2013] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 3 ESA UNCLASSIFIED – For Official Use Main radiation effects in electronic components [R. Ecoffet, TNS June 2013] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 4 ESA UNCLASSIFIED – For Official Use The two major sources of spacecraft anomalies are plasma and radiation effects Both plasma and radiation effects are related to charged particles The “Upsets” category includes several types of SEE (SEU, SET, SEFI) [R. Ecoffet, NSREC 2011] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 5 ESA UNCLASSIFIED – For Official Use Continuum of energy between the plasma charging and the radiation environment [R. Ecoffet, NSREC 2011] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 6 ESA UNCLASSIFIED – For Official Use Radiation testing 1. Radiation effects a. TID b. TNID c. SEE 2. Guidelines Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 7 ESA UNCLASSIFIED – For Official Use TID TOTAL IONIZING DOSE Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 8 ESA UNCLASSIFIED – For Official Use Example of the Laplace Radiation Environment - TID 1.E+10 JGO mission baseline, incl G shielding 1.E+09 No Callisto, 2 Eu flybys, incl. G shielding GEO 18 years Dose (rad) 1.E+08 LEO 8 years 1.E+07 ~200 krad behind 10mm Al 1.E+06 1.E+05 1.E+04 1.E+03 1.E+02 0 5 10 15 20 Al shielding (mm) After [Ch. Erd, “Laplace environment specification, 14 June 2011] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 9 ESA UNCLASSIFIED – For Official Use Typical TID effect in CMOS: charge buildup in gate and field oxides induces leakage currents Leakage Path CMOS technology 0.8um, LOCOS isolation Courant drain (A) (A) current Drainde -4 10 -6 10 -8 Experiment Simulation Source Gate Drain 50 krad 40 krad Source 10 -10 10 Gate 0 krad 30 krad 20 krad -12 10 Drain P-type Substrate 10 krad -5 -4 -3 -2 -1 0 1 2 3 Tension grille (V) Gatede voltage (V) 4 [V. Ferlet-Cavrois HDR05] 5 Positive Trapped Charge Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 10 ESA UNCLASSIFIED – For Official Use LOCOS Field Oxide Tenue )) ) en dose (krad(SiO TID sensitivity level (krad(SiO 2 2 Highly scaled CMOS technologies, with standard design, are less sensitive to TID 100 STI LOCOS Design with rad-hard libraries, like DARE, improves TID hardness, compared to standard designs CMOS SOI-CB 0.8µm 10 0.1 1 Technology technologique critical dimension (µm) Génération (µm) Compilation from [Lacoe03, Anel97, Kerwin98, Shaneyfelt98, Brady99, Lacoe99, Lacoe00, Lacoe01, Nowlin04] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 11 ESA UNCLASSIFIED – For Official Use However, real systems use a wide variety of IC technology generations, for which TID hardening is not granted [P. E. Dodd, 2009] 200 krad Compilation from data workshops between 2002 and 2004 Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 12 ESA UNCLASSIFIED – For Official Use 50MeV Protons Equi. Fluence (cm-2) Laplace Radiation Environment - TNID Preliminary data For information only 1E+13 1E+12 Sum Electrons Jupiter Protons Cruise Protons Jupiter 1E+11 1E+10 1E+09 NIEL in Si [Summers93] 1E+08 0 5 10 15 Al shield (mm) Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 13 ESA UNCLASSIFIED – For Official Use ~5.5E10 p/cm2 50 MeV eq. behind 10mm Al Simulations with OMERE (solid-sphere) from data in [Ch. Erd, “Laplace env. 20 spec.”, 14 June 2011] Because of displacement damage, some circuits fail at much lower equivalent total dose levels compared to gamma rays 50-70 krad corresponds to 2E10 cm-2 50MeV protons [B. G. Rax et al. TNS Dec. 1999] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 14 ESA UNCLASSIFIED – For Official Use What is Radiation Hardness Assurance (RHA) ? 1. RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the space radiation environment 2. Deals with environment definition, part selection, part testing, spacecraft layout, radiation tolerant design, mission/system/subsystems requirements, mitigation techniques, etc. 3. Radiation Hardness Assurance goes beyond the piece part level Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 15 ESA UNCLASSIFIED – For Official Use RHA radiation hardness assurance ECSS-Q-ST-60-15C 1 October 2012 MISSION/SYSTEM REQUIREMENTS SYSTEM AND CIRCUIT DESIGN PARTS AND MATERIALS RADIATION SENSITIVITY RADIATION ENVIRONMENT DEFINITION RADIATION LEVELS WITHIN THE SPACECRAFT ANALYSIS OF THE CIRCUITS, COMPONENTS, SUBSYSTEMS AND SYSTEM RESPONSE TO THE RADIATION ENVIRONMENT [C. Poivey, Short-Course RADECS 2011] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 16 ESA UNCLASSIFIED – For Official Use TID / TNID - Analysis Flow Mass, Function MISSION REQUIREMENTS TID/DD ENVIRONMENT DEFINITION SUBSYSTEM REQUIREMENTS SHIELDING ANALYSIS COMPONENT REQUIREMENTS TID/TNID REQUIREMENT TEMPERATURE RADIATION RADIATION DESIGN MARGIN PART TID/TNID SENSITIVITY DESIGN WORST CASE ANALYSIS AGING Requirements Satisfied? [C. Poivey, Short-Course RADECS 2011] NO YES DESIGN VALIDATED Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 17 ESA UNCLASSIFIED – For Official Use TID test standards ESCC 22900 Total Dose Steady-State Irradiation Test Method Others MIL-STD883G Method 1019.8 “Ionizing Radiation (Total Dose) Test Procedure” ASTM F 1892-06 “Standard Guide for Ionizing Radiation (Total Dose) Effects Testing of Semiconductor” MIL-STD750E Method 1019.5 “Steady-state Total Dose Irradiation Procedure” Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 18 ESA UNCLASSIFIED – For Official Use ESCC 22900 splits into two domains Evaluation Main objectives to establish worst case conditions for TID qualification (specific for device/technology). – Dose level, Dose rate effects – Bias dependency, Critical parameters – Annealing effects – Etc. Qualification and Procurement Lot Acceptance RVT: radiation verification test RADLAT: radiation lot acceptance test Main objectives to qualify or verify a specific device and/or diffusion lot – Test conditions defined in TID evaluation testing Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 19 ESA UNCLASSIFIED – For Official Use TID RHA, Scope EEE part family Sub family TIDL Diodes Voltage reference all Switching, rectifier, schottky > 300 Krad-Si Diodes microwave > 300 Krad-Si Integrated Circuits all Integrated Circuits microwave > 300 Krad-Si Oscillators (hybrids) all Charge Coupled devices (CCD) all Opto discrete devices, Photodiodes, LED, Phototransistors, Opto couplers all Transistors all Transistors microwave > 300 Krad-Si Hybrids all Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 20 ESA UNCLASSIFIED – For Official Use TNID RHA Scope Family Sub-Family TNIDL CCD, CMOS APS, opto discrete devices all all Integrated circuits Silicon monolithic bipolar or BiCMOS > 2x1011 p/cm2 50 MeV equivalent proton fluence Diodes Zener Low leakage Voltage reference > 2x1011 p/cm2 50 MeV equivalent proton fluence Transistor Low power NPN Low power PNP High power NPN High power PNP > 2x1011 p/cm2 50 MeV equivalent proton fluence Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 21 ESA UNCLASSIFIED – For Official Use ELDRS in Linear - bipolar based – components: Enhanced Low Dose Rate Sensitivity Laplace mission receives most of its TID in the vicinity of Jupiter’s moons. For example, 200krad received within ~40 days results in an average dose rate of ~200rad/h The low dose rate window in ESCC22900: 36-360 rad/h (10-100mrad/s) is well adapted to the Laplace environment [A. H. Johnston, et al. TNS Dec. 1994] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 22 ESA UNCLASSIFIED – For Official Use TID testing: radiation sources and dose rate 1 0.001 0.01 Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 23 ESA UNCLASSIFIED – For Official Use Example of RHA analysis: statistical approach part-to-part variation in the same lot 25 DUTs OP484 [Ph. Adell, JPL Short-Course RADECS 2011] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 24 ESA UNCLASSIFIED – For Official Use Assumption: The degradation of electrical parameters induced by radiation follows a Log-normal distribution [Ph. Adell, JPL ShortCourse RADECS 2011] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 25 ESA UNCLASSIFIED – For Official Use One-Sided Tolerance Limits, KTL, for 90% Confidence Limit 10 Ps=0.9 Ps=0.95 Ps=0.99 Ps=0.999 KTL 8 6 Confidence Limit (CL) and Probability of survival (Ps) are defined by the mission 4 2 0 0 10 20 30 Sample size 40 50 After R Pease, Rad Phys Chem 43, 1994 Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 26 ESA UNCLASSIFIED – For Official Use Statistical analysis of TID results: extraction of the normal distribution parameters: mean – standard deviation Statistical analysis: determination of worstcase parameter deltas for Worst-Case-Analysis [R. L. Pease, Short-Course NSREC 2004] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 27 ESA UNCLASSIFIED – For Official Use Example of statistical TID analysis: LM117 voltage regulator Large distributions of output voltage failure doses 4krad 20krad Sample size: 100 •The operating conditions have a strong impact on the radiation response •System designers will have to work closely with radiation effects engineers [Johnston and Rax, TNS Aug. 2010] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 28 ESA UNCLASSIFIED – For Official Use Displacement Damage in bipolar technologies Voltage Regulator 5 DUTs: large variability [B. G. Rax et al. TNS Dec. 1999] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 29 ESA UNCLASSIFIED – For Official Use Worst-case approach RDM: Radiation Design Margin 1. Worst-case approach: Total Dose level TIDL at which the worst case part of the worst case lot exceeds its limits 2. RDM is the ratio of device radiation tolerance TIDS out of device radiation requirement TIDL a. Uncertainties, variability in radiation environment b. Part to part variations c. Lot to Lot variations [C. Poivey, Short-Course RADECS 2011] 3. Applies also to TNID Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 30 ESA UNCLASSIFIED – For Official Use Example of Lot-to-lot variability The test of the flight lot is mandatory for accurate statistical analysis •Average input bias current degradation for 3 Date Codes (lots) •TID/TNID irradiation tests to be performed on same lot as FM lot [Ph. Adell, JPL Short-Course RADECS 2011] ESA UNCLASSIFIED – For Official Use Typical RDMs and RADLAT-RVT policy used in programs 1. ESA RHA a. DM > 2 on the WC failure level + systematic lot testing policy b. Part categorization criteria defined to guarantee a Ps of 90% with a CL of 90% + systematic lot testing policy 2. The RDM of 2 can be reduced to 1 if a. Statistical radiation analysis performed on large sample size b. Test of the Flight lot c. In the flight operating conditions or worst-case 3. ESA internal RHA are tailored to projects Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 32 ESA UNCLASSIFIED – For Official Use SEE SINGLE EVENT EFFECTS Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 33 ESA UNCLASSIFIED – For Official Use Several classes of single event effects Soft Errors (no permanent damage) • SEU Single-Event Upset • MBU, MCU Multiple Bit (or Cell) Upset • ASET Analog Single Event Transient • DSET Digital Single Event Transient • SEFI Single Event Functional Interrupt Hard Errors (permanent damage to device/circuit) • SEL Single-Event Latchup • SEHE Single-Event Hard Errors • SEDR Single-Event Dielectric Rupture • SEB Single-Event Burnout • SEGR Single-Event Gate Rupture This is not a complete listing of all possible single-event effects!! Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 34 ESA UNCLASSIFIED – For Official Use SEE: Why radiation testing? Prepare SEE rate prediction Goal: Providing good data for SEE rate prediction Principle – Bombard the device with accelerated ions – Count the number of events – Calculate SEE cross section for used LET – Repeated with a number of ions (and/or LET values) => SEE cross section versus LET Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 35 ESA UNCLASSIFIED – For Official Use SEE: Why radiation testing? SOA (safe operating area) and Go/No Go Test Goal: Verify that a certain type of event will not happen within a satellite mission time • SOA: Define voltage levels where no SEE achieved –SEB - SEGR in power MOSFETs • Go/No Go test: Verify that no SEE achieved or within acceptance criteria – e.g SEL, SEFIs, SETs • Typical values (varies in different space programs) > 106 - 107 particles/cm2 LET > 60-120 MeV.cm2/ mg Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 36 ESA UNCLASSIFIED – For Official Use Typical SEE Radiation Hardness Assurance requirements for European missions [ECSS-Q-ST-60-15C] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 37 ESA UNCLASSIFIED – For Official Use Standard Test Methods and Guidelines for SEE testing • ESCC 25100 • Single Event Effects Test Method and Guidelines Others JESD57 “Test Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy Ion Irradiation” JESD89-1A “Test Method for Real-Time Soft Error Rate” Heavily used for SER testing for ground level applications ASTM F1192M-95 “Standard Guide for the Measurement of SEP Induced by Heavy Ion Irradiation of Semiconductor Devices” MIL-STD750F Method 1080 “Single Event Burnout and SingleEvent Gate Rupture” Specific for SEB and SEGR in power MOSFETs Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 38 ESA UNCLASSIFIED – For Official Use How can I check the beam: The SEU monitor Contribution of secondaries from nuclear interactions below threshold -7 2 Cross-section (cm /bit) 10 4Mbits SRAM 250nm technology ATMEL -8 10 -9 10 -10 10 TAMU 25MeV/a in air RADEF air 1cm RADEF Vac. + Diff. RADEF Vacuum 64 GSI 100-1000MeV/a Ni -11 10 -12 10 -13 10 1 10 100 2 LET (MeVcm /mg) [R. Harboe-Sorensen, TNS Dec. 2008] [S. Hoëffgen, Radecs 2011] [V. Ferlet-Cavrois, TNS Oct. 2012] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 39 ESA UNCLASSIFIED – For Official Use How can I check the beam: Charge collection in a SSBD 0 Relative distribution 10 N -1 10 Ne Ar Fe Kr Xe Silicon Surface Barrier Detector, or PIN diode -2 10 RADEF cocktail -3 10 -4 10 100 1000 Energyin(MeV) Energy deposited the PIN diode (MeV) [V. Ferlet-Cavrois, TNS Oct. 2012] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 40 ESA UNCLASSIFIED – For Official Use Heavy Ion SEE Rate Calculation Integral Rectangular Parallelepiped (IRPP) Integral LET Spectra at 1 AU (Z=1-92) for Interplanetary orbit 100 mils Aluminum Shielding, CREME96 KM44V16104BS-50, 64Mbit DRAM from SAMSUNG 1.0E-07 1.00E+06 1.00E+05 1.00E+03 2 LET Fluence (#/cm -s) 1.00E+02 1.00E+01 1.00E+00 1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.0E-08 Xsection (cm 2/bit) SPE Average Over Peak SPE Average Over Worst Day SPE Average Over Worst Week GCR solar maximum GCR solar maximum 1.00E+04 1.0E-09 1.0E-10 SN1 all1 SN2 all1 SN1 all0 SN2 all0 # SEU / ion/cm2 1.0E-11 1.00E-05 1.0E-12 1.00E-06 # ions / cm2 / s 1.00E-07 1.00E-08 1.0E-13 1.00E-09 0 1.00E-10 1.00E-11 1.00E-03 10 20 30 40 50 60 70 80 90 LET (MeVcm2/mg) 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 LET Energy (MeV-cm2/mg) Sensitive volume (SV) geometry SEU rate/ s Xsat Z https://creme96.nrl.navy.mil/ Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 41 ESA UNCLASSIFIED – For Official Use Upset rate (upsets/bit-day) Comparative Upsets Rates, Uncertainties in SEE predictions are significant 10-4 Geosynchronous GCR Solar Minimum, CREME 96 10-5 CS = 1000 mm2 10-6 CS = 100 mm2 10-7 10-8 CS = 10 mm2 Thickness Z of SV 10-9 Cross Section = 1 mm2 10-10 10-11 Z = 0.5 mm Z = 1 mm Z = 2 mm Z = 4 mm 0 5 10 15 20 25 30 35 40 Device LET threshold (MeV cm2/mg) Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 42 ESA UNCLASSIFIED – For Official Use After E Petersen, NSREC 1997 short course Proton SEE Rate Calculation Austin/Motorola 512K8 SRAM Cross Section (cm²/bit) 1E-12 1E-13 1E-14 1E-15 # SEU / proton / cm2/bit Trapped Proton Integral Fluxes, behind 100 mils of Aluminum maximum shielding ST5: 200-35790 km 0 degree inclination , Solar 1E-16 0 10 20 30 40 50 60 Proton Energy (MeV) 1.00E+05 2 Proton Flux (#/cm -s) 1.00E+04 1.00E+03 1.00E+02 SEU rate/ bit s # protons / cm2 / s 1.00E+01 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 https://creme96.nrl.navy.mil/ MeV) Energy (>FERLET-CAVROIS Rad testing for space | Véronique | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 43 ESA UNCLASSIFIED – For Official Use 70 ONE EXAMPLE ABOARD PROBA-2 Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 44 ESA UNCLASSIFIED – For Official Use GPS receiver: latch-up events in 512kx8 SRAM Samsung K6R4016V1D-TC10 The GPS counts two redundant receiver units and a current limiter; in cold redundancy logic Proba-2: polar LEO Samsung K6R4016V1D-TC10 DC 220 TANO6EE KOREA [M. D’Alessio, et al. RADECS 2013] Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 45 ESA UNCLASSIFIED – For Official Use Statistical analysis of the GPS latch-up events from Oct-10 to Dec-12 • Average upset rate of 12 SELs/month (0.4 SEL/day) • Large variability, from 6 to 27 SELs/months • 87% SELs are in the SAA Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 46 ESA UNCLASSIFIED – For Official Use Statistical analysis of the GPS latch-up events (cont.) Cumulative Weibull ln(-ln(1-ΔT) 3 2 1 0 Slope of 1: Signature of random single event effects -1 -2 -3 -4 -5 -6 1 orbit 14 orbits 4 orbits -7 1.E+03 1.E+04 1.E+05 1.E+06 Time difference between two consecutive latch-ups (s) Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 47 ESA UNCLASSIFIED – For Official Use 1.E+07 The ground tests of the Samsung K6R4016V1D-TC10 shows large differences vs. Date Code Heavy ions Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 48 ESA UNCLASSIFIED – For Official Use The ground tests of the Samsung K6R4016V1D-TC10 shows large differences vs. Date Code High energy protons DC220 DC328 DC922 Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 49 ESA UNCLASSIFIED – For Official Use Experimental artefact during proton testing: The SEL rate increases with TID DC220 #1 DC328 #1 DC328 #2 Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 50 ESA UNCLASSIFIED – For Official Use GPS Proba-2: Upset rate prediction 1. CREME96: 0.21 SEL/day a. Multiple sensitive volumes (1/bit), thickness 1um b. To be compared to the in-flight rate 0.4 SEL/day 2. Origin of the discrepancy a. Inhomogeneity of the FM lot? sample-to-sample variation: Possible b. Thinner sensitive volume? Unlikely – Proba-2 is a polar LEO orbit, mainly protons 3. Better prediction rate is obtained in other devices (TDM) aboard Proba-2 Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 51 ESA UNCLASSIFIED – For Official Use Links to 1. ESCC web site a. https://spacecomponents.org/ b. EPPL 2. ESCIES web site a. https://escies.org/ b. Test facilities c. Standards and handbooks d. Radiation database Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 52 ESA UNCLASSIFIED – For Official Use