Download Slides - Agenda INFN

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Radiation testing of electronic
components for space
applications
Véronique FERLET-CAVROIS
ESA / ESTEC
INFN Laboratori Nazionali di Legnaro
18/04/2013
ESA UNCLASSIFIED – For Official Use
Few dates
 31 January 1958: launch of Explorer I, first US satellite, built by JPL; carries a
Geiger counter proposed by J. A. Van Allen

discovery of the Van Allen belts, confirmed by Explorer III (March 1958)
and Sputnik III (May 1958)

first scientific output of the Space Age
 10 July 1962: launch of Telstar, built by the Bell Telephone Labs with AT&T
funds and NASA support; first active telecom satellite: live television

one day before (9 July 1962): Starfish 1Mt US nuclear test, electrons
injected in the radiation belts, extremely high radiation levels

End of Oct. – beginning of Nov. 1962: USSR nuclear tests

21 February 1963: early loss of Telstar; first spacecraft loss due to
radiation effects
 1962-1963: 10 satellites successively failed (dose and displacement damage)

Exo-atmospheric tests banned in 1967
[R. Ecoffet, TNS June 2013]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 2
ESA UNCLASSIFIED – For Official Use
Few dates (cont.)
 1975: [Binder] first reported “single event effect” SEE anomalies;
unexpected triggering in bipolar digital circuits due to cosmic rays
 1978 – 1985: SEUs in Pioneer 12 (Venus), in a 1024 bit PMOS shift register
 SEU example in the OBC of Spot1-2-3; Half of these SEUs lead to operational
problems, including switching the satellite to safe mode.
[R. Ecoffet, TNS June 2013]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 3
ESA UNCLASSIFIED – For Official Use
Main radiation effects in electronic
components
[R. Ecoffet, TNS June 2013]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 4
ESA UNCLASSIFIED – For Official Use
The two major sources of spacecraft anomalies
are plasma and radiation effects
Both plasma and radiation effects
are related to charged particles
The “Upsets”
category includes
several types of SEE
(SEU, SET, SEFI)
[R. Ecoffet, NSREC 2011]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 5
ESA UNCLASSIFIED – For Official Use
Continuum of energy between the plasma
charging and the radiation environment
[R. Ecoffet, NSREC 2011]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 6
ESA UNCLASSIFIED – For Official Use
Radiation testing
1. Radiation effects
a. TID
b. TNID
c. SEE
2. Guidelines
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 7
ESA UNCLASSIFIED – For Official Use
TID
TOTAL IONIZING DOSE
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 8
ESA UNCLASSIFIED – For Official Use
Example of the Laplace Radiation
Environment - TID
1.E+10
JGO mission baseline, incl G shielding
1.E+09
No Callisto, 2 Eu flybys, incl. G shielding
GEO 18 years
Dose (rad)
1.E+08
LEO 8 years
1.E+07
~200 krad
behind
10mm Al
1.E+06
1.E+05
1.E+04
1.E+03
1.E+02
0
5
10
15
20
Al shielding (mm)
After [Ch. Erd, “Laplace environment specification, 14 June 2011]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 9
ESA UNCLASSIFIED – For Official Use
Typical TID effect in CMOS: charge buildup in gate
and field oxides induces leakage currents
Leakage Path
CMOS technology 0.8um,
LOCOS isolation
Courant
drain (A)
(A)
current
Drainde
-4
10
-6
10
-8
Experiment
Simulation
Source
Gate
Drain
50 krad
40 krad
Source
10
-10
10
Gate
0 krad
30 krad
20 krad
-12
10
Drain
P-type
Substrate
10 krad
-5 -4 -3 -2 -1 0 1 2 3
Tension
grille (V)
Gatede
voltage
(V)
4
[V. Ferlet-Cavrois HDR05]
5
Positive
Trapped
Charge
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 10
ESA UNCLASSIFIED – For Official Use
LOCOS
Field Oxide
Tenue
)) )
en dose
(krad(SiO
TID
sensitivity
level
(krad(SiO
2 2
Highly scaled CMOS technologies,
with standard design, are less sensitive to TID
100
STI
LOCOS
Design with rad-hard
libraries, like DARE,
improves TID
hardness, compared
to standard designs
CMOS
SOI-CB
0.8µm
10
0.1
1
Technology technologique
critical dimension
(µm)
Génération
(µm)
Compilation from [Lacoe03, Anel97, Kerwin98,
Shaneyfelt98, Brady99, Lacoe99, Lacoe00, Lacoe01, Nowlin04]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 11
ESA UNCLASSIFIED – For Official Use
However, real systems use a wide variety
of IC technology generations,
for which TID hardening is not granted
[P. E. Dodd, 2009]
200 krad
Compilation from data workshops between 2002 and 2004
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 12
ESA UNCLASSIFIED – For Official Use
50MeV Protons Equi. Fluence (cm-2)
Laplace Radiation Environment - TNID
Preliminary data
For information only
1E+13
1E+12
Sum
Electrons Jupiter
Protons Cruise
Protons Jupiter
1E+11
1E+10
1E+09
NIEL in Si
[Summers93]
1E+08
0
5
10
15
Al shield (mm)
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 13
ESA UNCLASSIFIED – For Official Use
~5.5E10
p/cm2 50
MeV eq.
behind
10mm Al
Simulations
with OMERE
(solid-sphere)
from data in
[Ch. Erd,
“Laplace env.
20 spec.”, 14 June
2011]
Because of displacement damage,
some circuits fail at much lower equivalent
total dose levels compared to gamma rays
50-70 krad
corresponds to
2E10 cm-2
50MeV protons
[B. G. Rax et al.
TNS Dec. 1999]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 14
ESA UNCLASSIFIED – For Official Use
What is Radiation Hardness Assurance (RHA) ?
1. RHA consists of all activities undertaken to ensure that
the electronics and materials of a space system perform
to their design specifications after exposure to the space
radiation environment
2. Deals with environment definition, part selection, part
testing, spacecraft layout, radiation tolerant design,
mission/system/subsystems requirements, mitigation
techniques, etc.
3. Radiation Hardness Assurance goes beyond the piece
part level
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 15
ESA UNCLASSIFIED – For Official Use
RHA radiation hardness assurance
ECSS-Q-ST-60-15C 1 October 2012
MISSION/SYSTEM
REQUIREMENTS
SYSTEM AND
CIRCUIT DESIGN
PARTS AND
MATERIALS
RADIATION
SENSITIVITY
RADIATION
ENVIRONMENT
DEFINITION
RADIATION
LEVELS WITHIN
THE SPACECRAFT
ANALYSIS OF THE CIRCUITS, COMPONENTS, SUBSYSTEMS AND
SYSTEM RESPONSE TO THE RADIATION ENVIRONMENT
[C. Poivey, Short-Course RADECS 2011]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 16
ESA UNCLASSIFIED – For Official Use
TID / TNID - Analysis Flow
Mass,
Function
MISSION
REQUIREMENTS
TID/DD
ENVIRONMENT
DEFINITION
SUBSYSTEM
REQUIREMENTS
SHIELDING
ANALYSIS
COMPONENT
REQUIREMENTS
TID/TNID
REQUIREMENT
TEMPERATURE
RADIATION
RADIATION
DESIGN MARGIN
PART TID/TNID
SENSITIVITY
DESIGN WORST CASE
ANALYSIS
AGING
Requirements
Satisfied?
[C. Poivey, Short-Course
RADECS 2011]
NO
YES
DESIGN
VALIDATED
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 17
ESA UNCLASSIFIED – For Official Use
TID test standards
 ESCC 22900
 Total Dose Steady-State Irradiation Test
Method
 Others

MIL-STD883G Method 1019.8 “Ionizing Radiation (Total
Dose) Test Procedure”

ASTM F 1892-06 “Standard Guide for Ionizing Radiation
(Total Dose) Effects Testing of Semiconductor”

MIL-STD750E Method 1019.5 “Steady-state Total Dose
Irradiation Procedure”
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 18
ESA UNCLASSIFIED – For Official Use
ESCC 22900 splits into two domains
 Evaluation

Main objectives to establish worst case conditions for
TID qualification (specific for device/technology).
–
Dose level, Dose rate effects
–
Bias dependency, Critical parameters
–
Annealing effects
–
Etc.
 Qualification and Procurement Lot Acceptance

RVT: radiation verification test

RADLAT: radiation lot acceptance test

Main objectives to qualify or verify a specific device
and/or diffusion lot
–
Test conditions defined in TID evaluation testing
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 19
ESA UNCLASSIFIED – For Official Use
TID RHA, Scope
EEE part family
Sub family
TIDL
Diodes
Voltage reference
all
Switching, rectifier,
schottky
> 300 Krad-Si
Diodes microwave
> 300 Krad-Si
Integrated Circuits
all
Integrated Circuits microwave
> 300 Krad-Si
Oscillators (hybrids)
all
Charge Coupled devices (CCD)
all
Opto discrete devices,
Photodiodes, LED,
Phototransistors, Opto couplers
all
Transistors
all
Transistors microwave
> 300 Krad-Si
Hybrids
all
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 20
ESA UNCLASSIFIED – For Official Use
TNID RHA Scope
Family
Sub-Family
TNIDL
CCD, CMOS APS, opto
discrete devices
all
all
Integrated circuits
Silicon monolithic
bipolar
or BiCMOS
> 2x1011 p/cm2 50 MeV equivalent
proton fluence
Diodes
Zener
Low leakage
Voltage reference
> 2x1011 p/cm2 50 MeV equivalent
proton fluence
Transistor
Low power NPN
Low power PNP
High power NPN
High power PNP
> 2x1011 p/cm2 50 MeV equivalent
proton fluence
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 21
ESA UNCLASSIFIED – For Official Use
ELDRS in Linear - bipolar based – components:
Enhanced Low Dose Rate Sensitivity
Laplace mission receives
most of its TID in the
vicinity of Jupiter’s
moons.
For example, 200krad
received within ~40
days results in an
average dose rate of
~200rad/h
The low dose rate
window in ESCC22900:
36-360 rad/h
(10-100mrad/s) is
well adapted to the
Laplace environment
[A. H. Johnston, et al. TNS Dec. 1994]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 22
ESA UNCLASSIFIED – For Official Use
TID testing: radiation sources and
dose rate
1
0.001
0.01
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 23
ESA UNCLASSIFIED – For Official Use
Example of RHA analysis: statistical approach
part-to-part variation in the same lot
25 DUTs OP484
[Ph. Adell, JPL
Short-Course
RADECS 2011]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 24
ESA UNCLASSIFIED – For Official Use
Assumption: The degradation of electrical
parameters induced by radiation follows a
Log-normal distribution
[Ph. Adell, JPL ShortCourse RADECS 2011]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 25
ESA UNCLASSIFIED – For Official Use
One-Sided Tolerance Limits, KTL, for 90%
Confidence Limit
10
Ps=0.9
Ps=0.95
Ps=0.99
Ps=0.999
KTL
8
6
Confidence Limit
(CL) and Probability
of survival (Ps) are
defined by the
mission
4
2
0
0
10
20
30
Sample size
40
50
After R Pease, Rad Phys Chem 43, 1994
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 26
ESA UNCLASSIFIED – For Official Use
Statistical analysis of TID results: extraction
of the normal distribution parameters:
mean – standard deviation
Statistical analysis:
determination of worstcase parameter deltas for
Worst-Case-Analysis
[R. L. Pease,
Short-Course
NSREC 2004]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 27
ESA UNCLASSIFIED – For Official Use
Example of statistical TID analysis:
LM117 voltage regulator
Large distributions of output voltage failure doses
4krad
20krad
Sample
size:
100
•The operating
conditions have a
strong impact on the
radiation response
•System designers
will have to work
closely with radiation
effects engineers
[Johnston and Rax,
TNS Aug. 2010]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 28
ESA UNCLASSIFIED – For Official Use
Displacement Damage in
bipolar technologies
Voltage
Regulator
5 DUTs:
large
variability
[B. G. Rax et al.
TNS Dec. 1999]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 29
ESA UNCLASSIFIED – For Official Use
Worst-case approach
RDM: Radiation Design Margin
1. Worst-case approach: Total Dose level TIDL at which the
worst case part of the worst case lot exceeds its limits
2. RDM is the ratio of device radiation tolerance TIDS out of
device radiation requirement TIDL
a. Uncertainties, variability in radiation environment
b. Part to part variations
c. Lot to Lot variations
[C. Poivey, Short-Course
RADECS 2011]
3. Applies also to TNID
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 30
ESA UNCLASSIFIED – For Official Use
Example of Lot-to-lot variability
The test of the flight lot is mandatory
for accurate statistical analysis
•Average input
bias current
degradation for 3
Date Codes (lots)
•TID/TNID
irradiation tests
to be performed
on same lot as
FM lot
[Ph. Adell, JPL
Short-Course
RADECS 2011]
ESA UNCLASSIFIED – For Official Use
Typical RDMs and RADLAT-RVT policy
used in programs
1. ESA RHA
a. DM > 2 on the WC failure level + systematic lot testing
policy
b. Part categorization criteria defined to guarantee a Ps of
90% with a CL of 90% + systematic lot testing policy
2. The RDM of 2 can be reduced to 1 if
a. Statistical radiation analysis performed on large sample
size
b. Test of the Flight lot
c. In the flight operating conditions or worst-case
3. ESA internal RHA are tailored to projects
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 32
ESA UNCLASSIFIED – For Official Use
SEE
SINGLE EVENT EFFECTS
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 33
ESA UNCLASSIFIED – For Official Use
Several classes of single event
effects
Soft Errors (no permanent damage)
• SEU Single-Event Upset
• MBU, MCU Multiple Bit (or Cell) Upset
• ASET Analog Single Event Transient
• DSET Digital Single Event Transient
• SEFI Single Event Functional Interrupt
Hard Errors (permanent damage to device/circuit)
• SEL Single-Event Latchup
• SEHE Single-Event Hard Errors
• SEDR Single-Event Dielectric Rupture
• SEB Single-Event Burnout
• SEGR Single-Event Gate Rupture
This is not a complete listing of all possible single-event effects!!
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 34
ESA UNCLASSIFIED – For Official Use
SEE: Why radiation testing?
Prepare SEE rate prediction
Goal: Providing good data for SEE rate prediction
Principle
– Bombard the device
with accelerated ions
– Count the number of
events
– Calculate SEE cross
section for used LET
– Repeated with a
number of ions (and/or
LET values)
=> SEE cross section
versus LET
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 35
ESA UNCLASSIFIED – For Official Use
SEE: Why radiation testing?
SOA (safe operating area)
and Go/No Go Test
Goal: Verify that a certain type of event will
not happen within a satellite mission time
• SOA: Define voltage levels
where no SEE achieved
–SEB - SEGR in power
MOSFETs
• Go/No Go test: Verify that
no SEE achieved or within
acceptance criteria
– e.g SEL, SEFIs, SETs
• Typical values (varies in
different space programs)
> 106 - 107 particles/cm2
LET > 60-120 MeV.cm2/ mg
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 36
ESA UNCLASSIFIED – For Official Use
Typical SEE Radiation Hardness
Assurance requirements for
European missions
[ECSS-Q-ST-60-15C]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 37
ESA UNCLASSIFIED – For Official Use
Standard Test Methods and
Guidelines for SEE testing
•
ESCC 25100

•
Single Event Effects Test Method and Guidelines
Others

JESD57 “Test Procedures for the Measurement of Single-Event
Effects in Semiconductor Devices from Heavy Ion Irradiation”

JESD89-1A “Test Method for Real-Time Soft Error Rate”
Heavily used for SER testing for ground level applications

ASTM F1192M-95 “Standard Guide for the Measurement of SEP
Induced by Heavy Ion Irradiation of Semiconductor Devices”

MIL-STD750F Method 1080 “Single Event Burnout and SingleEvent Gate Rupture”
Specific for SEB and SEGR in power MOSFETs
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 38
ESA UNCLASSIFIED – For Official Use
How can I check the beam:
The SEU monitor
Contribution of secondaries from nuclear
interactions below threshold
-7
2
Cross-section (cm /bit)
10
4Mbits SRAM
250nm technology
ATMEL
-8
10
-9
10
-10
10
TAMU 25MeV/a in air
RADEF air 1cm
RADEF Vac. + Diff.
RADEF Vacuum
64
GSI 100-1000MeV/a Ni
-11
10
-12
10
-13
10
1
10
100
2
LET (MeVcm /mg)
[R. Harboe-Sorensen,
TNS Dec. 2008]
[S. Hoëffgen, Radecs 2011]
[V. Ferlet-Cavrois, TNS Oct. 2012]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 39
ESA UNCLASSIFIED – For Official Use
How can I check the beam:
Charge collection in a SSBD
0
Relative distribution
10
N
-1
10
Ne
Ar
Fe
Kr
Xe
Silicon Surface
Barrier Detector,
or PIN diode
-2
10
RADEF cocktail
-3
10
-4
10
100
1000
Energyin(MeV)
Energy deposited
the PIN diode (MeV)
[V. Ferlet-Cavrois, TNS Oct. 2012]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 40
ESA UNCLASSIFIED – For Official Use
Heavy Ion SEE Rate Calculation
Integral Rectangular Parallelepiped (IRPP)
Integral LET Spectra at 1 AU (Z=1-92) for Interplanetary orbit
100 mils Aluminum Shielding, CREME96
KM44V16104BS-50, 64Mbit DRAM from SAMSUNG
1.0E-07
1.00E+06
1.00E+05
1.00E+03
2
LET Fluence (#/cm -s)
1.00E+02
1.00E+01
1.00E+00
1.00E-01
1.00E-02
1.00E-03
1.00E-04
1.0E-08
Xsection (cm 2/bit)
SPE Average Over Peak
SPE Average Over Worst Day
SPE Average Over Worst Week
GCR solar maximum
GCR solar maximum
1.00E+04
1.0E-09
1.0E-10
SN1 all1
SN2 all1
SN1 all0
SN2 all0
# SEU / ion/cm2
1.0E-11
1.00E-05
1.0E-12
1.00E-06
# ions / cm2 / s
1.00E-07
1.00E-08
1.0E-13
1.00E-09
0
1.00E-10
1.00E-11
1.00E-03
10
20
30
40
50
60
70
80
90
LET (MeVcm2/mg)
1.00E-02
1.00E-01
1.00E+00
1.00E+01
1.00E+02
1.00E+03
LET Energy (MeV-cm2/mg)
Sensitive volume
(SV) geometry
SEU rate/ s
Xsat
Z
https://creme96.nrl.navy.mil/
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 41
ESA UNCLASSIFIED – For Official Use
Upset rate (upsets/bit-day)
Comparative Upsets Rates, Uncertainties in
SEE predictions are significant
10-4
Geosynchronous GCR Solar Minimum, CREME 96
10-5
CS = 1000 mm2
10-6
CS = 100 mm2
10-7
10-8
CS = 10 mm2
Thickness Z of SV
10-9
Cross Section = 1 mm2
10-10
10-11
Z = 0.5 mm
Z = 1 mm
Z = 2 mm
Z = 4 mm
0
5
10
15
20
25
30
35
40
Device LET threshold (MeV cm2/mg)
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 42
ESA UNCLASSIFIED – For Official Use
After E Petersen, NSREC 1997 short course
Proton SEE Rate Calculation
Austin/Motorola 512K8 SRAM
Cross Section (cm²/bit)
1E-12
1E-13
1E-14
1E-15
# SEU / proton / cm2/bit
Trapped Proton Integral Fluxes, behind 100 mils of Aluminum
maximum
shielding ST5: 200-35790 km 0 degree inclination , Solar
1E-16
0
10
20
30
40
50
60
Proton Energy (MeV)
1.00E+05
2
Proton Flux (#/cm -s)
1.00E+04
1.00E+03
1.00E+02
SEU rate/ bit s
# protons / cm2 / s
1.00E+01
1.00E-01
1.00E+00
1.00E+01
1.00E+02
1.00E+03
https://creme96.nrl.navy.mil/
MeV)
Energy (>FERLET-CAVROIS
Rad testing for space | Véronique
| INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 43
ESA UNCLASSIFIED – For Official Use
70
ONE EXAMPLE
ABOARD PROBA-2
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 44
ESA UNCLASSIFIED – For Official Use
GPS receiver: latch-up events in 512kx8
SRAM Samsung K6R4016V1D-TC10
The GPS counts two redundant receiver units and a current limiter;
in cold redundancy logic
Proba-2: polar LEO
Samsung
K6R4016V1D-TC10
DC 220
TANO6EE KOREA
[M. D’Alessio, et al.
RADECS 2013]
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 45
ESA UNCLASSIFIED – For Official Use
Statistical analysis of the GPS latch-up
events from Oct-10 to Dec-12
• Average upset rate of 12 SELs/month (0.4 SEL/day)
• Large variability, from 6 to 27 SELs/months
• 87% SELs are in the SAA
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 46
ESA UNCLASSIFIED – For Official Use
Statistical analysis of the GPS latch-up
events (cont.)
Cumulative Weibull ln(-ln(1-ΔT)
3
2
1
0
Slope of 1:
Signature of random
single event effects
-1
-2
-3
-4
-5
-6
1 orbit
14 orbits
4 orbits
-7
1.E+03
1.E+04
1.E+05
1.E+06
Time difference between two consecutive latch-ups (s)
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 47
ESA UNCLASSIFIED – For Official Use
1.E+07
The ground tests of the Samsung
K6R4016V1D-TC10 shows large differences
vs. Date Code
Heavy ions
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 48
ESA UNCLASSIFIED – For Official Use
The ground tests of the Samsung
K6R4016V1D-TC10 shows large
differences vs. Date Code
High energy protons
DC220
DC328
DC922
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 49
ESA UNCLASSIFIED – For Official Use
Experimental artefact during proton testing:
The SEL rate increases with TID
DC220 #1
DC328 #1
DC328 #2
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 50
ESA UNCLASSIFIED – For Official Use
GPS Proba-2: Upset rate prediction
1. CREME96: 0.21 SEL/day
a. Multiple sensitive volumes (1/bit), thickness 1um
b. To be compared to the in-flight rate 0.4 SEL/day
2. Origin of the discrepancy
a. Inhomogeneity of the FM lot? sample-to-sample
variation: Possible
b. Thinner sensitive volume? Unlikely
–
Proba-2 is a polar LEO orbit, mainly protons
3. Better prediction rate is obtained in other devices (TDM)
aboard Proba-2
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 51
ESA UNCLASSIFIED – For Official Use
Links to
1. ESCC web site
a. https://spacecomponents.org/
b. EPPL
2. ESCIES web site
a. https://escies.org/
b. Test facilities
c. Standards and handbooks
d. Radiation database
Rad testing for space | Véronique FERLET-CAVROIS | INFN Laboratori Nazionali di Legnaro | 18/04/2013 | Slide 52
ESA UNCLASSIFIED – For Official Use