* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download PPT File - HCC Learning Web
Symmetry in quantum mechanics wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
Hamiltonian mechanics wikipedia , lookup
Classical central-force problem wikipedia , lookup
Centripetal force wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Bra–ket notation wikipedia , lookup
Analytical mechanics wikipedia , lookup
Statistical mechanics wikipedia , lookup
Four-vector wikipedia , lookup
Tenth Edition 5 CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University Distributed Forces: Centroids and Centers of Gravity © 2013 The McGraw-Hill Companies, Inc. All rights reserved. Tenth Edition Vector Mechanics for Engineers: Statics Contents Introduction Theorems of Pappus-Guldinus Center of Gravity of a 2D Body Sample Problem 5.7 Centroids and First Moments of Areas and Lines Distributed Loads on Beams Sample Problem 5.4 Center of Gravity of a 3D Body: Centroid of a Volume Centroids of Common Shapes of Areas Centroids of Common Shapes of Lines Composite Plates and Areas Sample Problem 5.9 Centroids of Common 3D Shapes Composite 3D Bodies Sample Problem 5.12 Sample Problem 5.1 Determination of Centroids by Integration © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5-2 Tenth Edition Vector Mechanics for Engineers: Statics Application There are many examples in engineering analysis of distributed loads. It is convenient in some cases to represent such loads as a concentrated force located at the centroid of the distributed load. © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5-3 Tenth Edition Vector Mechanics for Engineers: Statics Introduction • The earth exerts a gravitational force on each of the particles forming a body – consider how your weight is distributed throughout your body. These forces can be replaced by a single equivalent force equal to the weight of the body and applied at the center of gravity for the body. • The centroid of an area is analogous to the center of gravity of a body; it is the “center of area.” The concept of the first moment of an area is used to locate the centroid. • Determination of the area of a surface of revolution and the volume of a body of revolution are accomplished with the Theorems of Pappus-Guldinus. © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5-4 Tenth Edition Vector Mechanics for Engineers: Statics Center of Gravity of a 2D Body • Center of gravity of a plate • Center of gravity of a wire M y x W xW x dW M y yW yW y dW © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5-5 Tenth Edition Vector Mechanics for Engineers: Statics Centroids and First Moments of Areas and Lines • Centroid of an area x W x dW x At x t dA x A x dA Q y first moment with respect to y • Centroid of a line x W x dW x La x a dL x L x dL yL y dL yA y dA Qx first moment with respect to x © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5-6 Tenth Edition Vector Mechanics for Engineers: Statics Determination of Centroids by Integration x A xdA x dxdy xel dA yA ydA y dxdy yel dA • Double integration to find the first moment may be avoided by defining dA as a thin rectangle or strip. x A xel dA x A xel dA yA yel dA ax a x dx 2 yA yel dA x ydx y ydx 2 y a x dx © 2013The McGraw-Hill Companies, Inc. All rights reserved. x A xel dA 2r 1 cos r 2 d 3 2 yA yel dA 2r 1 sin r 2 d 3 2 5-7 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.4 SOLUTION: • Determine the constant k. • Evaluate the total area. • Using either vertical or horizontal strips, perform a single integration to find the first moments. Determine by direct integration the location of the centroid of a parabolic spandrel. • Evaluate the centroid coordinates. First, estimate the location of the centroid by inspection. Discuss with a neighbor where it is located, roughly, and justify your answer. © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5-8 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.4 SOLUTION: • Determine the constant k. y k x2 b b k a2 k 2 a b a y 2 x 2 or x 1 2 y1 2 a b • Evaluate the total area. A dA a b x3 b 2 y dx 2 x dx 2 a 3 0 0a ab 3 a © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5-9 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.4 • Using vertical strips, perform a single integration to find the first moments. b 2 Qy x el dA xydx x 2 x d x 0 a a a b x 4 a 2 b 2 4 a 4 0 2 a 1 b y 2 Qx y el dA y dx 2 x dx 2 0 2 a a b 2 x 5 ab2 4 2a 5 0 10 © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 10 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.4 • Or, using horizontal strips, perform a single integration to find the first moments. Try calculating Qy or Qx by this method, and confirm that you get the same value as before. b a2 x2 ax Qy x el dA a x dy dy 2 2 0 1 b 2 a 2 a 2b a y dy 2 0 b 4 a 1 2 Qx y el dA y a x dy ya 1 2 y d y b b a 3 2 ab2 ay 1 2 y d y 10 b 0 © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 11 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.4 • Evaluate the centroid coordinates. xA Q y ab a 2b x 3 4 3 x a 4 yA Q x ab ab 2 y 3 10 y 3 b 10 Is this “center of area” close to where you estimated it would be? © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 12 Tenth Edition Vector Mechanics for Engineers: Statics Determination of Centroids by Integration Usually, the choice between using a vertical or horizontal strip is equally good, but in some cases, one choice is much better than the other. For example, for the area shown below, is a vertical or horizontal strip a better choice, and why? Think about this and discuss your choice with a neighbor. y x © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 13 Tenth Edition Vector Mechanics for Engineers: Statics First Moments of Areas and Lines • An area is symmetric with respect to an axis BB’ if for every point P there exists a point P’ such that PP’ is perpendicular to BB’ and is divided into two equal parts by BB’. • The first moment of an area with respect to a line of symmetry is zero. • If an area possesses a line of symmetry, its centroid lies on that axis • If an area possesses two lines of symmetry, its centroid lies at their intersection. • An area is symmetric with respect to a center O if for every element dA at (x,y) there exists an area dA’ of equal area at (-x,-y). • The centroid of the area coincides with the center of symmetry. © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 14 Tenth Edition Vector Mechanics for Engineers: Statics Centroids of Common Shapes of Areas © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 15 Tenth Edition Vector Mechanics for Engineers: Statics Centroids of Common Shapes of Lines © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 16 Tenth Edition Vector Mechanics for Engineers: Statics Composite Plates and Areas • Composite plates X W x W Y W y W • Composite area X A xA Y A yA © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 17 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.1 SOLUTION: • Divide the area into a triangle, rectangle, and semicircle with a circular cutout. • Calculate the first moments of each area with respect to the axes. For the plane area shown, determine the first moments with respect to the x and y axes and the location of the centroid. • Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout. • Compute the coordinates of the area centroid by dividing the first moments by the total area. © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 18 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.1 • Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout. © 2013The McGraw-Hill Companies, Inc. All rights reserved. Qx 506.2 103 mm 3 Q y 757.7 103 mm 3 5 - 19 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.1 • Compute the coordinates of the area centroid by dividing the first moments by the total area. x A 757.7 103 mm 3 X A 13.828103 mm 2 X 54.8 mm y A 506.2 103 mm 3 Y A 13.828103 mm 2 Y 36.6 mm © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 20 Tenth Edition Vector Mechanics for Engineers: Statics Theorems of Pappus-Guldinus • Surface of revolution is generated by rotating a plane curve about a fixed axis. • Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation. A 2 yL © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 21 Tenth Edition Vector Mechanics for Engineers: Statics Theorems of Pappus-Guldinus • Body of revolution is generated by rotating a plane area about a fixed axis. • Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation. V 2 y A © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 22 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.7 SOLUTION: • Apply the theorem of Pappus-Guldinus to evaluate the volumes of revolution of the pulley, which we will form as a large rectangle with an inner rectangular cutout. The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as shown. Knowing that the pulley is made of steel and that the density of steel is 7.85 10 3 kg m 3 determine the mass and weight of the rim. © 2013The McGraw-Hill Companies, Inc. All rights reserved. • Multiply by density and acceleration to get the mass and weight. 5 - 23 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.7 SOLUTION: • Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section. • Multiply by density and acceleration to get the mass and weight. W mg 60.0 kg9.81 m s m V 7.85 10 3 kg m3 7.65 10 6 mm3 10 9 m3 /mm3 2 © 2013The McGraw-Hill Companies, Inc. All rights reserved. m 60.0 kg W 589 N 5 - 24 Tenth Edition Vector Mechanics for Engineers: Statics Distributed Loads on Beams L W wdx dA A 0 OPW xdW L OPA xdA x A 0 • A distributed load is represented by plotting the load per unit length, w (N/m) . The total load is equal to the area under the load curve. • A distributed load can be replace by a concentrated load with a magnitude equal to the area under the load curve and a line of action passing through the area centroid. © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 25 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.9 SOLUTION: • The magnitude of the concentrated load is equal to the total load or the area under the curve. • The line of action of the concentrated load passes through the centroid of the area under the curve. • Determine the support reactions by (a) A beam supports a distributed load as drawing the free body diagram for the shown. Determine the equivalent beam and (b) applying the conditions concentrated load and the reactions at of equilibrium. the supports. © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 26 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.9 SOLUTION: • The magnitude of the concentrated load is equal to the total load or the area under the curve. F 18.0 kN • The line of action of the concentrated load passes through the centroid of the area under the curve. X 63 kN m 18 kN © 2013The McGraw-Hill Companies, Inc. All rights reserved. X 3. 5 m 5 - 27 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.9 • Determine the support reactions by applying the equilibrium conditions. For example, successively sum the moments at the two supports: MA 0: By 6 m 18 kN3.5 m 0 B y 10.5 kN MB 0: Ay 6 m 18 kN6 m 3.5 m 0 Ay 7.5 kN • And by summing forces in the x-direction: Fx 0: Bx 0 © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 28 Tenth Edition Vector Mechanics for Engineers: Statics Center of Gravity of a 3D Body: Centroid of a Volume • Center of gravity G W j W j rG W j r W j rGW j r W j W dW rGW r dW • Results are independent of body orientation, x W xdW yW ydW z W zdW • For homogeneous bodies, W V and dW dV x V xdV © 2013The McGraw-Hill Companies, Inc. All rights reserved. yV ydV z V zdV 5 - 29 Tenth Edition Vector Mechanics for Engineers: Statics Centroids of Common 3D Shapes © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 30 Tenth Edition Vector Mechanics for Engineers: Statics Composite 3D Bodies • Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts. X W xW Y W yW Z W zW • For homogeneous bodies, X V xV © 2013The McGraw-Hill Companies, Inc. All rights reserved. Y V yV Z V zV 5 - 31 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.12 SOLUTION: • Form the machine element from a rectangular parallelepiped and a quarter cylinder and then subtracting two 1-in. diameter cylinders. Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in. © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 32 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.12 © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 33 Tenth Edition Vector Mechanics for Engineers: Statics Sample Problem 5.12 X xV V 3.08 in 5.286 in 4 3 X 0.577 in. Y yV V 5.047 in 5.286 in 4 3 Y 0.577 in. Z zV V 1.618 in 5.286 in 4 3 Z 0.577 in. © 2013The McGraw-Hill Companies, Inc. All rights reserved. 5 - 34