Download 4_Balbuena

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
6th Trento Workshop on Advanced Silicon Radiation Detectors
1/16
Simulations of 3D-DDTC
Silicon detectors
J.P. Balbuena, G. Pellegrini, R. Bates, C. Fleta,
M. Lozano, M. Ullán
Semiconductor radiation detectors group
Institut de Microelectrònica de Barcelona
Centre Nacional de Microelectrònica - CSIC
Spain
3rd March 2011
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon RadiationBlocks
Detectors
Columns
Increments
Transitions
Hypertext
2/16
1 Motivation
2 Simulation: Layout and parameters
3 Simulation: Electric field
4 Simulation: Charge multiplication
5 Conclusions/Future work
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon RadiationBlocks
Detectors
Columns
Increments
Transitions
Hypertext
3/16
1 Motivation
2 Simulation: Layout and parameters
3 Simulation: Electric field
4 Simulation: Charge multiplication
5 Conclusions/Future work
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon Radiation Detectors
4/16
3D-DDTC measurements
Irradiated 3D detectors present Charge multiplication effect:
 above 150V for p-type
 above 260V for n-type
[M. Köhler, University of Freiburg, Germany]
Objective
Develop 3D detectors with Charge multiplication effect for low
Bias voltages before irradiation by changing the bulk doping
concentration.
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon RadiationBlocks
Detectors
Columns
Increments
Transitions
Hypertext
5/16
1 Motivation
2 Simulation: Layout and parameters
3 Simulation: Electric field
4 Simulation: Charge multiplication
5 Conclusions/Future work
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon Radiation Detectors
P-type
Geometry
1E-9
pitch: 80 µm
wafer thickness: 285 µm
column depth: 250 µm
column diameter: 10 µm
1E-10
Leakage current (A)
-
Doping levels
-
1E-11
1000 ·cm
500 ·cm
300 ·cm
200 ·cm
100 ·cm
50 ·cm
1E-12
1E-13
n+ columns: 1019 cm-3
p+ columns: 1019 cm-3
p-stop: 1018 cm-3
Si/SiO2 charge: 5·1011 cm-2
p+
6/16
1E-14
0
30
60
90
120
150
180
210
240
270
300
Reverse Bias (V)
p+
n+
p+
p+
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon Radiation Detectors
N-type
Geometry
1E-10
pitch: 80 µm
wafer thickness: 285 µm
column depth: 250 µm
column diameter: 10 µm
1E-11
Leakage current (A)
-
Doping levels
- n+ columns: 1019 cm-3
- p+ columns: 1019 cm-3
- Si/SiO2 charge: 5·1011 cm-2
n+
7/16
1000 ·cm
500 ·cm
300 ·cm
200 ·cm
100 ·cm
50 ·cm
1E-12
1E-13
1E-14
0
30
60
90
120
150
180
210
240
270
Reverse Bias (V)
n+
p+
n+
n+
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon Radiation Detectors
Physics
8/16
Model
Mobility
Doping dependance, High Electric field
saturation
Generation and Recombination
Doping dependant Shockley-Read-Hall
Generation recombination, Surface
recombination model
Impact ionization
University of Bologna impact ionization
model
Tunneling
Band-to-band tunneling, Hurkx trapassisted tunneling
Oxide physics
Oxide as a wide band gap semiconductor
for mips (irradiated), interface charge
accumulation
Radiation model
Acceptor/Donor states in the band gap
(traps)
[M. Benoit, Laboratoire de l’accélérateur linéar (LAL), Orsay, France]
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon RadiationBlocks
Detectors
Columns
Increments
Transitions
Hypertext
9/16
1 Motivation
2 Simulation: Layout and parameters
3 Simulation: Electric field
4 Simulation: Charge multiplication
5 Conclusions/Future work
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon Radiation Detectors
10/16
Cut at z = 142,5 µm for Vbias = 150 V
18
1000 ·cm
500 ·cm
300 ·cm
200 ·cm
100 ·cm
n+
16
Electric Field (V/µm)
Electric Field (p-type)
14
12
10
8
p+
6
4
2
0
0
10
20
30
40
50
60
Electric Field (V/µm)
Distance (µm)
Cut at z = 250
35 µm
142,5
µm
µm
35
26
24
30
22
20
25
18
16
20
14
12
15
10
8
10
6
4
5
2
0
1000 ·cm
500 ·cm
300 ·cm
200 ·cm
100 ·cm
50 ·cm
0
50
100
150
200
250
300
Reverse Bias (V)
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon Radiation Detectors
16
Cut at z = 142,5 µm for Vbias = 150 V
1000 ·cm
500 ·cm
300 ·cm
200 ·cm
100 ·cm
50 ·cm
14
Electric Field (V/µm)
Electric Field (n-type)
11/16
12
10
8
p+
n+
6
4
2
0
0
10
20
30
40
50
60
Electric Field (V/µm)
Distance (µm)
Cutatatz z= =142,5
250
µm
Cut
35 µm
40
26
38
24
36
34
22
32
20
30
28
18
26
16
24
22
14
20
12
18
16
10
14
8
12
10
6
8
4
6
4
2
2
0
1000 ·cm
500 ·cm
300 ·cm
200 ·cm
100 ·cm
50 ·cm
0
50
100
150
200
250
300
Reverse Bias (V)
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon RadiationBlocks
Detectors
Columns
Increments
Transitions
Hypertext
12/16
1 Motivation
2
Using PowerPoint
Simulation:
Layout and Nice
parameters
to Typeset
Presentations
3 Simulation: Electric field
4 Simulation: Charge multiplication
5 Conclusions/Future work
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon Radiation Detectors
13/16
Charge multiplication
Compromise between low full depletion voltages and high
enough voltages for Charge multiplication
Charge Collected (electrons)
40000
Voltage (V)
300
VFD p-type
200
V (Emax~ 14 V/µm) p-type
VFD n-type
V (Emax~ 14 V/µm) n-type
100
0
0
200
400
600
800
1000
p-type (Vbias =200V)
36000
n-type (Vbias =100V)
32000
28000
24000
20000
16000
0
Resistivity (·cm)
100
200
300
400
600
Resistivity (·cm)
V = 150 V for both n and p-type
MIP
ρn = 100 Ω·cm
Charge multiplication
ρp = 200 Ω·cm
J.P. Balbuena
500
22800 electrons
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon Radiation Detectors
14/16
Charge multiplication in the irradiated 3D model
Doping concentration: Neff = 7·1011 cm-3 (p-type)
Fluence: Φeq = 2·1015 neq/cm2
30000
Vbias = 200 V
Vbias = 250 V
11
Qox = 5·10 cm
-10
6x10
6
12
Qox = 10 cm
-2
-2
12
-2
12
-2
-10
4
Qox = 2·10 cm
2
Qox = 3·10 cm
5x10
Charge Collected (electrons)
Electric field (V/µm)
Leakage current (A)
-9
10
14
-10
9x10
12
-10
8x10
10
-10
7x10
8
-10
4x10 0
0
10
50
100
20
150
30
200
40
250
50
300
60
15
n/cm
2
26000
24000
22000
20000
18000
16000
0
100
200
300
Bias voltage (V)
Bias
Distance
voltage
(µm)
(V)
11 cm-2
Electric field
compatible
with
Interface
charge:
Qox = 5·10
Charge multiplication for 250V
J.P. Balbuena
eq = 2 x 10
28000
Unexpected reduction of the
charge collected for 250V !!
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon RadiationBlocks
Detectors
Columns
Increments
Transitions
Hypertext
15/16
1 Motivation
2
Using PowerPoint
Simulation:
Layout and Nice
parameters
to Typeset
Presentations
3 Simulation: Electric field
4 Simulation: Charge multiplication
5 Conclusions/Future work
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
6th Trento Workshop on Advanced Silicon Radiation Detectors
16/16
Conclusions
 Obtained charge multiplication effect in both n and p-type
substrates without irradiation
Future work
 Complete the study on multiplication effect for different
doping levels at different biasing voltages
 Solve problems of charge multiplication in the irradiated
3D model.
J.P. Balbuena
Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC)
Related documents