* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Ruler Postulate: The points on a line can be matched one to one
Duality (projective geometry) wikipedia , lookup
History of geometry wikipedia , lookup
Steinitz's theorem wikipedia , lookup
Line (geometry) wikipedia , lookup
Atiyah–Singer index theorem wikipedia , lookup
Euler angles wikipedia , lookup
Trigonometric functions wikipedia , lookup
Rational trigonometry wikipedia , lookup
Integer triangle wikipedia , lookup
Riemann–Roch theorem wikipedia , lookup
Noether's theorem wikipedia , lookup
Four color theorem wikipedia , lookup
History of trigonometry wikipedia , lookup
Brouwer fixed-point theorem wikipedia , lookup
RulerPostulate:Thepointsonalinecanbematchedonetoonewiththe Point,Point,Line,andPlanePostulates: REALnumbers.TheREALnumberthatcorrespondstoapointisthe Postulate5:ThroughanytwopointsthereexistsexactlyONEline. COORDINATEofthepoint.TheDISTANCEbetweenpointsAandB,written Postulate6:AlinecontainsatleastTWOpoints. asAB,istheabsolutevalueofthedifferenceofthecoordinatesofAandB. Postulate7:IfTWOlinesintersect,thentheirintersectionisexactlyonePOINT. Postulate8: SegmentAdditionPostulate:IfBisBETWEENAandC,then ThroughanythreenoncollinearpointsthereexistsexactlyonePLANE. AB+BC=AC.IfAB+BC=AC,thenBisBETWEENAandC. Postulate9: AplanecontainsatleastthreeNONCOLLINEARpoints. MidpointFormula:Themidpointofasegmentisthepointhalfwayacrossthe Postulate10:IfTWOpointslieinaplane,thentheLINEcontainingthemliesin segment. theplane. Themidpointofasegmentinthex-ycoordinateplaneisfoundbyaveragingthe Postulate11:IfTWOplanesintersect,thentheirintersectionisaLINE. twox-valuesandaveragingthetwoy-values. AlgebraicPropertiesofEquality AdditionProperty: Ifa=b,thena+c=b+c. Themidpointofasegmentwithendpoints(X1,Y1)and(X2,Y2)inthex-y coordinateplaneis… !!!!! !!!!! ! , ! SubtractionProperty: ProtractorPostulate:Theraysofanyanglecanbematchedonetoonewiththe realnumbersfrom0to360. MultiplicationProperty: Ifa=b,thenaxc=bxc. DivisionProperty: Ifa=b,thena/c=b/c. SubstitutionProperty: Ifa=b,thenacanbesubstitutedforbinanyequationorexpression. AngleAdditionPostulate: If∠𝐴𝐵𝐶isadjacentto∠𝐷𝐵𝐶then𝑚∠𝐴𝐵𝐶 + 𝑚∠𝐷𝐵𝐶 = 𝑚∠𝑨𝑩𝑫. TheDistributiveProperty: a(b+c)=(b+c)a=ab+ac,wherea,b,andcarerealnumbers. DistanceFormula: Thedistanceorlength,AB,of𝐴𝐵isthetotallengthacrossthesegment. ReflexiveProperty:Foranyrealnumbera,a=a. Thedistance(d)orlengthofasegmentwithendpoints(X1,Y1)and (X2,Y2)inthex-ycoordinateplaneis… 𝑑 = Ifa=b,thena-c=b-c. (𝑋1 − 𝑋2)! + (𝑌1 − 𝑌2)! SymmetricProperty:Foranyrealnumbersaandb,ifa=b,thenb=a. TransitiveProperty Foranyrealnumbersa,b,andc,ifa=bandb=c,thena=c. Theorem2.1CongruenceofSegments: Theorem3.1:AlternateInteriorAnglesTheorem Segmentcongruenceisreflexive,symmetric,andtransitive. Iftwoparallellinesarecutbyatransversal,thenthepairs ofALTERNATEinterioranglesareCONGRUENT. Theorem2.2CongruenceofAngles Anglecongruenceisreflexive,symmetric,andtransitive. Theorem3.2:AlternateExteriorAnglesTheorem IfTWOparallellinesareCUTbyatransversal,thenthePAIRS Theorem2.3:RightAnglesCongruenceTheorem ofalternateEXTERIORanglesarecongruent. AllrightanglesareCONGRUENT. Theorem3.3:ConsecutiveInteriorAnglesTheoremIftwoparallellinesarecut byatransversal,thenthepairsofCONSECUTIVEinterioranglesare SUPPLEMENTARY. Theorem2.5:CongruentSupplementsTheoremIf∠1and∠2aresupplementary and∠2and∠3aresupplementary,then∠𝟏 ≅ ∠𝟑. Postulate12:LinearPairPostulateIftwoanglesformalinearpair,thenthetwo anglesareSUPPLEMENTARY. Theorem2.6:VerticalAnglesCongruenceTheorem If∠1and∠2areverticalangles,then∠𝟏 ≅ ∠𝟐. Postulate13:ParallelPostulate IfthereisaLINEandaPOINTnotontheline,thenthereisexactlyONEline throughthepointparallel(∥)tothegivenline. Postulate14:PerpendicularPostulate IfthereisaLINEandaPOINTnotontheline,thenthereisexactlyONEline throughthepointperpendicular(⊥)tothegivenline. Postulate15:CorrespondingAnglesPostulate IftwoPARALLELlinesarecutbyaTRANSVERSAL thenthepairsofCORRESPONDINGanglesarecongruent. Postulate16:CorrespondingAnglesConverseIftwolinesarecutbytransversal sothepairsofcorrespondinganglesareCONGRUENT,thenthelinesare PARALLEL. Theorem3.4:AlternateInteriorAnglesConverse Iftwolinesarecutbytransversalsothepairsofalternateinteriorangles areCONGRUENT,thenthelinesarePARALLEL Theorem3.5:AlternateExteriorAnglesConverse Iftwolinesarecutbytransversalsothepairsofalternateexteriorangles areCONGRUENT,thenthelinesarePARALLEL. Theorem3.6:ConsecutiveInteriorAnglesConverse Iftwolinesarecutbytransversalsothepairsofconsecutiveinterioranglesare SUPPLEMENTARY,thenthelinesarePARALLEL. Theorem3.7:TransitivePropertyofParallelLines Iftwolinesareparalleltothesameline,thentheyarePARALLELtoeachother. Theorem3.8: Theorem4.3:ThirdAnglesTheorem Iftwolinesintersecttoformalinearpairofcongruentangles, IFTWOANGLESOFONETRIANGLEARECONGRUENTTOTHETWOANGLESOFA thenthelinesarePERPENDICULAR. SECONDTRIANGLE,THENTHETHIRDANGLEOFTHEFIRSTTRIANGLEIS CONGRUENTTOTHETHIRDANGLEOFTHESECONDTRIANGLE. Theorem3.9:Iftwolinesareperpendicular,thentheyintersect Theorem4.4:PropertiesofCongruentTriangles toformFOURRIGHTANGLES. Theorem3.10:Iftwooftwoadjacentacuteanglesareperpendicular, thentheanglesareCOMPLEMENTARY. Theorem3.11:PerpendicularTransversalTheorem Ifatransversalisperpendiculartooneoftwoparallellines,then itisPERPENDICULARtotheotherline. Theorem3.12:LinesPerpendiculartoaTransversalTheorem Inaplane,iftwolinesareperpendiculartothesameline,then theyarePARALLELtoeachother. Theorem4.1:TriangleSumTheorem THEANGLESOFATRIANGLEADDUPTO180°. CorollarytotheTriangleSumTheorem THENON-RIGHTANGLESOFARIGHTTRIANGLEARECOMPLEMENTARY. Theorem4.2:ExteriorAngleTheorem THEMEASUREOFANEXTERIORANGLEOFATRIANGLEISEQUALTOTHESUMOF THETWONON-ADJACENTINTERIORANGLES. ReflexivePropertyofCongruentTriangles:∆𝐴𝐵𝐶 ≅ ∆𝐴𝐵𝐶 SymmetricPropertyofCongruentTriangles IF∆𝐴𝐵𝐶 ≅ ∆𝐷𝐸𝐹,THEN∆𝐷𝐸𝐹 ≅ ∆𝐴𝐵𝐶. TransitivePropertyofCongruentTriangles IF∆𝐴𝐵𝐶 ≅ ∆𝐷𝐸𝐹AND∆𝐷𝐸𝐹 ≅ ∆𝐺𝐻𝐼,THEN∆𝐴𝐵𝐶 ≅ ∆𝐺𝐻𝐼. Postulate19:Side-Side-Side(SSS)CongruencePostulate IfTHREEsidesofonetrianglearecongruenttoTHREEsidesofasecondtriangle, thenthetwotrianglesareCONGRUENT. Postulate20:Side-Angle-Side(SAS)CongruencePostulate IFTWOSIDESANDTHEINCLUDEDANGLEOFONETRIANGLEARECONGRUENTTO TWOSIDESANDTHEINCLUDEDANGLEOFASECONDTRIANGLE,THENTHETWO TRIANGLESARECONGRUENT. Theorem4.5:Hypotenuse-Leg(HL)CongruenceTheorem IFTHEHYPOTENUSEANDALEGOFONERIGHTTRIANGLEARECONGRUENTTO THEHYPOTENUSEANDALEGOFASECONDTRIANGLE,THENTHETWO TRIANGLESARECONGRUENT. Postulate21:Angle-Side-Angle(ASA)CongruencePostulate Theorem9.1:Translation(Slide)Theorem Atranslationisanisometry. IFTWOANGLESANDTHEINCLUDEDSIDEOFONETRIANGLEARECONGRUENTTO TWOANGLESANDTHEINCLUDEDSIDEOFASECONDTRIANGLE,THENTHETWO Theorem9.2:Reflection(Flip)TheoremAreflectionisanisometry. TRIANGLESARECONGRUENT. CoordinateRulesforReflections Ifpreimage(x,y)isreflectedoverthex-axis(y=0)…itsimageis(x,-y). Theorem4.6:Angle-Angle-Side(AAS)CongruenceTheorem IFTWOANGLESANDTHENON-INCLUDEDSIDEOFONETRIANGLEARE CONGRUENTTOTWOANGLESANDTHECORRESPONDINGNON-INCLUDEDSIDE OFASECONDTRIANGLE,THENTHETWOTRIANGLESARECONGRUENT. CorrespondingPartsofCongruentTrianglesareCongruent(CPCTC) IFTHEREARETWOORMORETRIANGLESTHATARECONGRUENT,THENTHEIR CORRESPONDINGPARTS(SIDESANDANGLES)ARECONGRUENT. Theorem4.7:BaseAnglesTheorem Iftwosidesofatrianglearecongruent,thenTHEANGLESOPPOSITETHEMARE CONGRUENT. Theorem4.8:ConverseofBaseAnglesTheorem Iftwoanglesofatrianglearecongruent,thenTHESIDESOPPOSITETHEMARE CONGRUENT. CorollarytotheBaseAnglesTheorem Ifthreesidesofatrianglearecongruent(equilateral),thenITISEQUIANGULAR. CorollarytotheConverseofBaseAnglesTheorem Ifthreeanglesofatrianglearecongruent(equiangular),thenITISEQUILATERAL. Ifpreimage(x,y)isreflectedoverthey-axis(x=0)…itsimageis(-x,y). Ifpreimage(x,y)isreflectedoverthey=x…itsimageis(y,x). Ifpreimage(x,y)isreflectedoverthey=-x…itsimageis(-y,-x). Theorem9.3:Rotation(Spin)Theorem Arotationisanisometry. CoordinateRulesforRotations Whenapoint(a,b)isrotatedcounterclockwiseabouttheorigin, Forarotationof90°,(𝑥, 𝑦) ⟶ (−𝑦, 𝑥). Forarotationof180°,(𝑥, 𝑦) ⟶ (−𝑥, −𝑦). Forarotationof270°,(𝑥, 𝑦) ⟶ (𝑦, −𝑥). Theorem9.4:CompositionTheorem Acompositionoftwo(ormore)isometriesisanisometry. Theorem9.5:ReflectionsinParallelLinesTheorem Areflectionofafigureover/in/abouttwoparallellinesisATRANSLATIONOF LENGTHTWICETHEDISTANCEBETWEENTHEPARALLELLINES. Theorem9.6:ReflectionsinIntersectingLinesTheorem Areflectionofafigureover/in/abouttwointersectinglinesisAROTATIONOF DEGREETWICETHEANGLEFORMEDBYTHEINTERSECTINGLINES. Theorem5.1:MidsegmentTheoremThesegmentconnectingTHEMIDPOINTS OFTWOSIDESOFATRIANGLE(THEMIDSEGMENT)ISHALFTHELENGTHOFTHE THIRDSIDEANDPARALLELTOTHETHIRDSIDEOFTHETRIANGLE. Theorem5.2:PerpendicularBisectorTheoremInaplane,ifapointisonthe perpendicularbisectorofasegment,thenTHEPOINTISEQUIDISTANTFROMTHE SEGMENT’SENDPOINTS. Theorem5.3:ConverseofthePerpendicularBisectorTheorem Inaplane,ifapointisequidistantfromtheendpointsofasegment,thenITISON THEPERPENDICULARBISECTOROFTHESEGMENT. Theorem5.4:ConcurrencyofPerpendicularBisectorsofaTriangleTheorem Theperpendicularbisectorsofatriangleintersectatapoint(circumcenter) thatisEQUIDISTANTFROMEACHOFTHETRIANGLE’SVERTICES. Theorem5.5:AngleBisectorTheoremIfapointisonthebisectorofanangle, thenITISEQUIDISTANTFROMTHETWOSIDESOFTHEANGLE. Theorem5.6:ConverseoftheAngleBisectorTheoremIfapointisintheinterior CorollaryofTheorem5.8:ConcurrencyoftheMediansofaTriangleTheorem Thecentroidofatrianglewithvertices(X1,Y1),(X2,Y2)and(X3,Y3)inthex-y coordinateplaneis… !!!!!!!! !!!!!!!! ! , ! Theorem5.9:ConcurrencyoftheAltitudesofaTriangleTheorem ThealtitudesofatriangleINTERSECTATAPOINT(ORTHOCENTER). Theorem5.10 Ifonesideofatriangleislongerthananotherside,thenTHEANGLEOPPOSITE THELONGERSIDEISLARGERTHANTHEANGLEOPPOSITETHESHORTERSIDE. Theorem5.11 Ifoneangleofatriangleislargerthananotherangle,thenTHESIDEOPPOSITE THELARGERANGLEISLONGERTHANTHESIDEOPPOSITETHESMALLERANGLE. Theorem5.12:TriangleInequalityTheorem ThesumofanytwosidesofatriangleisGREATERTHANTHELENGTHOFTHE THIRDSIDE. Theorem5.13:HingeTheoremIftwosidesofatrianglearecongruenttotwo sidesofanothertriangleandtheincludedangleofthefirstislargerthanthe includedangleofthesecond,thenTHIRDSIDEOFTHEFIRSTTRIANGLEIS ofanangleandisEQUIDISTANTFROMTHETWOSIDESOFTHEANGLE,THENIT LONGERTHANTHETHIRDSIDEOFTHESECONDTRIANGLE. ISONTHEANGLEBISECTOROFTHEANGLE. Theorem5.14:ConverseoftheHingeTheorem Theorem5.7:ConcurrencyofAngleBisectorsofaTriangleTheorem Iftwosidesofatrianglearecongruenttotwosidesofanothertriangleandthe Theanglebisectorsofatriangleintersectatapoint(incenter)thatis thirdsideofthefirstislongerthanthethirdsideofthesecond,thenINCLUDED EQUIDISTANTTOEACHOFTHESIDESOFTHETRIANGLE. ANGLEOFTHEFIRSTTRIANGLEISLARGERTHANTHEINCLUDEDANGLEOFTHE Theorem5.8:ConcurrencyoftheMediansofaTriangleTheoremThemedians SECONDTRIANGLE. ofatriangleintersectatapoint(CENTROID)thatdivideseachmedianintoa vertex-sidepartthatisTWO-THIRDSthemedian’slength,andamidpoint-side partthatisONE-THIRDthemedian’slength.