Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
11.6 Geometric Probability Geometry Ms. Reser Objectives/Assignment Find a geometric probability. Use geometric probability to solve reallife problems. Assignments: pp. 701-701 #1-25 all AND Ch. 11 Review pp. 708-710 #1-34. REMINDER: CH 11 TEST IS MONDAY!!! Finding a Geometric Probability A probability is a number from 0 to 1 that represents the chance an event will occur. Assuming that all outcomes are equally likely, an event with a probability of 0 CANNOT occur. An event with a probability of 1 is just as likely to occur as not. Finding Geometric probability continued . . . In an earlier course, you may have evaluated probabilities by counting the number of favorable outcomes and dividing that number by the total number of possible outcomes. In this lesson, you will use a related process in which the division involves geometric measures such as length or area. This process is called GEOMETRIC PROBABILITY. Geometric Probability— probability and length Let AB be a segment that contains the segment CD. If a point K on AB is chosen at random, then the probability that that it is on CD is as follows: Length of CD P(Point K is on CD) = Length of AB A C D B Geometric Probability— probability and AREA Let J be a region that contains region M. If a point K in J is chosen at random, then the probability that it is in region M is as follows: P(Point K is in region M) = Area of M Area of J J M Ex. 1: Finding a Geometric Probability Find the geometric probability that a point chosen at random on RS is on TU. Reminders: Chapter 11 Test Monday Chapter 12 Definitions due Tuesday/Wednesday Chapter 12 Postulates due Tuesday/Wednesday