Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 18 Two-port Networks the four terminals have four-terminal been paired into ports network KCL two-port network At all times, the instantaneous current flowing into one terminal is equal to the instantaneous current flowing out the other. i1 i2 i4 i3 i1+i2+i3+i4=0(KCL) i1 i1=-i2 ; i3=-i4 i4 V1 z11I1 z12 I 2 V1 AV2 BI 2 V1 h11I1 h12V2 I1 CV2 DI 2 I 2 h21I1 h22V2 I1 y11V1 y12V2 V2 aV1 bI1 I1 g11V1 g12 I 2 I 2 y21V1 y22V2 I 2 cV1 dI1 V2 g 21V1 g 22 I 2 V2 z 21I1 z 22 I 2 The network is linear(without independent sources). Impedance Parameters Impedance or z parameters are defined by V1 z11I1 z12 I 2 V2 z21I1 z22 I 2 impedance matrix Z z11 V1 I1 I 0 2 V1 z11I1 z12 I 2 Voc1 V2 z21I1 z22 I 2 Voc2 Open-circuit input impedance. z12 VI 21 I1 0 Open-circuit transfer impedance from port 1 to port 2 z 21 VI12 I 2 0 Open-circuit transfer impedance from port 2 to port 1 z 22 VI 22 I1 0 Open-circuit output impedance. Determining of the z parameters: (a) finding z11 and z21, (b) finding z12 and z22 Examples (a) T equivalent circuit (for reciprocal case only), (b) general equivalent circuit Admittance Parameters Admittance or y parameters are defined by I1 y11 I 2 y21 y12 V1 y22 V2 admittance matrix Y I1 y11V1 y12V2 I 2 y21V1 y22V2 I1 y11V1 y12V2 I sc1 I 2 y21V1 y22V2 I sc2 y11 VI11 V2 0 Short-circuit input admittance. y12 VI12 V1 0 Short-circuit transfer admittance from port 1 to port 2 y21 VI21 V2 0 Short-circuit transfer admittance from port 2 to port 1 y22 VI22 V1 0 Short-circuit output admittance. Determination of the y parameters: (a) finding y11 and y21, (b) finding y12 and y22. (a) -equivalent circuit (for reciprocal case only), (b) general equivalent circuit. Hybrid Parameters Hybrid or h parameters are defined by V1 h11I1 h12V2 I 2 h21I1 h22V2 hybrid matrix Z h11 VI11 V2 0 h12 VV12 I1 0 Open-circuit reverse voltage gain I2 I1 V 0 2 Short-circuit forward current gain h21 h22 VI22 I1 0 Short-circuit input impedance. Open-circuit output admittance. The h-parameter equivalent network of a two-port network Inverse hybrid parameters (g parameters) I1 g11V1 g12 I 2 V2 g 21V1 g 22 I 2 The g-parameter model of a two-port network Transmission Parameters Transmission or T parameters are defined by V1 A B V2 I1 C D I 2 V1 a11V2 a12 I 2 I1 a21V2 a22 I 2 Transmission matrix T A VV12 I 2 0 B VI 21 C VI12 V2 0 I 2 0 D II12 V2 0 Open-circuit voltage ratio Negative short-circuit transfer impedance Open-circuit transfer admittance Negative short-circuit current ratio Inverse transmission parameters V2 aV1 bI1 I 2 cV1 dI1 Reciprocal Two-Port Circuits ------------- linear and has no dependent source If a two-port circuit is reciprocal, the following relationships exist among the port parameters: z12 z21 y12 y21 h12 h21 g12 g 21 T AD BC 1 T ad bc 1 Symmetric Two-Port Circuit A reciprocal two-port circuit is symmetric if its ports can be interchanged without disturbing the values of the terminal currents and voltages. If a two-port circuit is symmetric, the following relationships exist among the port parameters: (besides those exist in reciprocal) z11 z 22 y11 y22 h h11h22 h12h21 1 g g11 g 22 g12 g 21 1 A D ad Question: How many calculations or measurements are needed to determine a set of parameters of a two-port circuit? For a general two-port with sources: For a general linear two-port: 6 4 For a reciprocal two-port: 3 For a symmetric two-port: 2 Relationships between parameters Example: z parameters y parameters V1 z11I1 z12 I 2 I1 y11V1 y12V2 V2 z21I1 z22 I 2 I 2 y21V1 y22V2 z 22 z12 y11 , y12 , z z z 21 z11 y 21 , y 22 z z where z z11z22 z12 z21 Interconnection of networks Series connection of two two-port networks Z Z a Zb Parallel connection of two two-port networks Y Ya Yb Cascade connection of two two-port networks T Ta Tb Transistor amplifier with source and load resistance