* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Parametric Equations and Calculus
Survey
Document related concepts
Transcript
Parametric Formulas dy dy dt dx dx dt First derivative of a function in parametric form: d dy d y dt dx dx dx 2 dt 2 Second derivative of a function in parametric form : 2 2 dx dy Arc length of a function in parametric form: s dt a dt dt b Parametric Equations and Calculus Ex. 1 (Noncalculator) Given the parametric equations x 2 t and y 3t 2 2t , find dy d2 y and . dx dx 2 __________________________________________________________________________________ Ex. 2 (Noncalculator) Given the parametric equations x 4cost and y 3sin t , write an equation of the tangent line to the curve at the point where t 3 . 4 _________________________________________________________________________________ Ex 3 (Noncalculator) Find all points of horizontal and vertical tangency given the parametric equations x t 2 t, y t 2 3t 5. __________________________________________________________________________________ Ex. 4 (Noncalculator) Set up an integral expression for the arc length of the curve given by the parametric equations x t 2 1, y 4t 3 1, 0 t 1. Do not evaluate. Ex. 1 (Noncalculator) Given the parametric equations x 2 t and y 3t 2 2t , find dy d2 y and . dx dx 2 Solution: dy To find , we must differentiate both of the parametric equations with respect to t. dx 1 dy d dx d 1 12 2 3t 2t 6t 2 and 2 t 2 t t 2 so dt dt dt dt 2 dy 3 1 dy dt 6t 2 2 2t 2 6t 1 dx dx t 2 dt d2 y dy dy To find , we must differentiate with respect to x so [thinking of 2 dx dx dx as a function of t and t as a function of x] that 1 1 1 1 1 dt 1 dt d 2 y d dy 9t 12 t 12 dt 9t 2 t 2 9t 2 t 2 9t 1 2 2 9t t 1 dx dx dx dx dx 2 dx dx t 2 dt ________________________________________________________________________________ Ex. 2 (Noncalculator) Given the parametric equations x 4cost and y 3sin t , write an equation of the tangent line to the curve at the point where t 3 . 4 Solution: dy dy dt dx dx dt d 3sin t 3cost 3 dt cot t d 4sin t 4 4cost dt 2 3 2 3 dy 3 3 2 When t , 1 , x 4 2 2, and y 3 4 dx 4 4 2 2 2 3 2 3 x2 2 . 2 4 (Remind students that they may leave their tangent line equations in point-slope form.) Therefore the tangent line equation is: y Ex 3 (Noncalculator) Find all points of horizontal and vertical tangency given the parametric equations x t 2 t, y t 2 3t 5. dy d 2 t 3t 5 2t 3 dy dt dt Solution: d 2 dx dx 2t 1 t t dt dt dy A horizontal tangent will occur when 0 , which happens when 2t 3 0 (and 2t 1 0) dx 3 3 so a horizontal tangent occurs at t . Substituting t into the given equations, we find that a 2 2 15 11 dy horizontal tangent will occur at , . A vertical tangent will occur when is undefined, dx 4 4 1 . Substituting 2 1 27 1 t into the given equations, we find that a vertical tangent will occur at , . 2 4 4 _______________________________________________________________________________ Ex. 4 (Noncalculator) Set up an integral expression for the arc length of the curve given by the parametric equations x t 2 1, y 4t 3 1, 0 t 1. Do not evaluate. which happens when 2t 1 0 (and 2t 3 0) so a vertical tangent occurs at t Solution: For parametric equations, the formula for arc length is: 2 s b a 2 dx dy dt dt dt For our problem, dx d 2 dy d t 1 2t and 4t 3 1 12t 2 so the arc length is given by the dt dt dt dt integral expression s 1 0 2t 12t 2 dt 2 2 or s 1 0 4t 2 144t 4 dt . CALCULUS BC WORKSHEET ON PARAMETRICS AND CALCULUS Work the following on notebook paper. Do not use your calculator. dy d2 y and On problems 1 – 5, find . dx dx 2 1. x t 2 , y t 2 6t 5 2. x t 2 1, y 2t 3 t 2 3. x t , y 3t 2 2t 4. x ln t, y t 2 t 5. x 3sin t 2, y 4cost 1 _____________________________________________________________________________ 6. A curve C is defined by the parametric equations x t 2 t 1, y t 3 t 2 . dy in terms of t. dx (b) Find an equation of the tangent line to C at the point where t = 2. (a) Find 7. A curve C is defined by the parametric equations x 2cost, y 3sin t . (a) Find dy in terms of t. dx (b) Find an equation of the tangent line to C at the point where t = . 4 ______________________________________________________________________________ On problems 8 – 10, find: dy (a) in terms of t. dx (b) all points of horizontal and vertical tangency 8. x t 5, y t 2 4t 9. x t 2 t 1, y t 3 3t 10. x 3 2cost, y 1 4sint , 0 t 2 ______________________________________________________________________________ On problems 11 - 12, a curve C is defined by the parametric equations given. For each problem, write an integral expression that represents the length of the arc of the curve over the given interval. 11. x t 2 , y t 3 , 0 t 2 12. x e2t 1, y 3t 1, 2 t 2 dy d 2 dx d 2 t 6t 5 2t 6 and t 2t dt dt dt dt dy dy dt 2t 6 3 1 dx dx 2t t dt d2y dy To find , we must differentiate with respect to x so that 2 dx dx 3 3 2 2 d 2 y d dy d 3 3 dt t t 3 1 2t dx 2 dx dx dx t t 2 dx dx 2t 3 dt 1. ______________________________________________________________________________ dy d 3 2 dx d 2 2t t 6t 2 2t and t 1 2t dt dt dt dt dy dy dt 6t 2 2t 3t 1 dx dx 2t dt d2y dy To find , we must differentiate with respect to x so that 2 dx dx d 2 y d dy d dt 3 3 3t 1 3 2 dx dx dx dx dx 2t dx dt 2. ________________________________________________________________________________ dy d 2 dx d 1 12 3. 3t 2t 6t 2 and t t dt dt dt dt 2 dy 3 1 dy dt 6t 2 2 12t 4t 2 dx dx 1 12 dt 2 t d2y dy To find , we must differentiate with respect to x so that 2 dx dx 1 1 1 2 1 d 2 y d dy d 32 2 18t 2 2t 2 dt 18t 2t 12 t 4 t dx dx dx 2 dx dx dx dt 1 2 1 18t 2 2t 1 12 t 2 1 2 36t 4 dy d 2 dx d 1 t t 2t 1 and ln t dt dt dt dt t dy dy dt 2t 1 2t 2 t 1 dx dx t dt 2 d y dy To find , we must differentiate with respect to x so that 2 dx dx d 2 y d dy d 2 dt 4t 1 4t 1 2t t 4t 1 4t 2 t 2 1 dx dx dx dx dx dx t dt 4. ________________________________________________________________________________ dy d dx d 4cos t 1 4sin t and 3sin t 2 3cos t dt dt dt dt dy dy dt 4sin t 4 tan t dx dx 3cos t 3 dt d2y dy To find , we must differentiate with respect to x so that 2 dx dx 4 4 sec2 t sec2 t 4 d 2 y d dy d 4 dt 4 tan t sec2 t 3 3 sec3 t 2 dx dx dx dx 3 3cos t 9 dx 3 dx dt 5. _______________________________________________________________________________ 6. (a) dy 3t 2 2t dx 2t 1 (b) When t = 1, dy 3 12 2 1 8 , x 5, y 4 so the tangent line equation is dx 2 1 1 5 8 x 5 5 ______________________________________________________________________ dy 3cos t 3 7. (a) cot t dx 2sin t 2 dy 3 3 3 2 cot , x 2, y (b) When t , so the tangent line equation is 2 4 2 2 4 dx 3 2 3 y x 2 2 2 y4 8. (a) dy 2t 4 dx 1 dy dx 0 and 0 so a horizontal tangent dt dt occurs when 2t 4 0 which is at t= 2. When t = 2, x = 7 and y = 4 so a horizontal tangent occurs at the point 7, 4 . A vertical tangent occurs dy dx when 0 and 0. dt dt Since 1 0 , there is no point of vertical tangency on this curve. ______________________________________________________________________ dy 3t 2 3 9. (a) dx 2t 1 dy dx (b) A horizontal tangent occurs when 0 and 0 so a horizontal tangent dt dt occurs when 3t 2 3 0 which is at t 1 . When t = 1 , x = 1 and y = 2, and when t 1, x = 3 and y = 2 so a horizontal tangent occurs at the points 1, 2 and 3, 2 dy dx A vertical tangent occurs when 0 and 0 so a vertical tangent occurs dt dt 1 1 3 11 when 2t 1 0 so t . When t , x and y so a vertical tangent 2 2 4 8 3 11 occurs at the point , . 8 4 ______________________________________________________________________ dy 4cos t 10. (a) dx 2sin t dy dx (b) A horizontal tangent occurs when 0 and 0 so a horizontal tangent dt dt 3 occurs when 4cos t 0 which is at t and . When t = , x = 3 and y = 3, 2 2 2 3 and when t , x = 3 and y = 5 so a horizontal tangent occurs at the 2 points 3, 3 and 3, 5 . dy dx A vertical tangent occurs when 0 and 0 so a vertical tangent occurs dt dt when 2sin t 0 so t 0 and . When t 0 , x 5 and y 1 and when t , x 1 and y 1 so a vertical tangent occurs at the points 5, 1 and 1, 1 . (b) A horizontal tangent occurs when 2 2 2 dx dy 11. s dt a dt 0 dt b 2t 2 3t 2 2 dt or 2 0 4t 2 9t 4 dt ______________________________________________________________________ 2 2 2 dx dy 12. s dt a dt 2 dt b 2e2t 2 3 dt or 2 2 2 4e4t 9 dt