Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Where are electrons found in the electron cloud? I. The Bohr Atom 1. Bohr was the first to propose that the electrons were located in energy levels. A lower case “n” is used to denote these principle energy levels (also called principle quantum numbers). The principle energy levels are numbered, so that the level closest to the nucleus is labeled n = 1. The next level is labeled n = 2 and so forth. Each principle energy level had a certain energy value associated with the level. The closer the level was to the nucleus, the lower the energy of the level. The further away from the nucleus, the higher the energy is of that level. As long as the electrons were in these levels, the electrons do not give off energy. The dark circle below represents the nucleus. The rings around the nucleus represent the principle energy levels. Number the principle energy levels starting with the one closest to the nucleus: n = 1, n = 2, n = 3 etc. 1 2. Electron Configuration and the Periodic Table Each principle energy level can only hold so many electrons before the level is full. A quick and easy way to determine the maximum number of electrons (max e-) that a principle energy level can hold is given by the following: max e- = 2 n2. First square the principle energy level number (n) then multiply by 2. Energy Level (n) Maximum number of electrons (max e- = 2 n2) 1 2 3 4 5 6 Electrons are arranged around the nucleus by filling up the first principle energy level (n=1), then the second energy level, etc. This is the electron configuration given on your periodic table. The number of electrons are listed for each level with a dash between levels: for oxygen (O) which has a total of 8 electrons, the configuration is 2–6 (2 electrons are located in the first principle energy level and 6 electrons are located in the second principle energy level. Look up the electron configuration on the periodic table for the element given and fill in the chart. Ca is done as an example. Element Ca n=1 2 n=2 8 n =3 8 n=4 2 Na F B Al C H 2 3. Completely Filled vs. Occupied Principle Energy Levels Occupied means that there is at least one electron in the Principle Energy Levels Li: 2 – 1 has 2 occupied Principle Energy Levels Completely Filled means that each level has its maximum number of electrons which can be determined by the 2n2 rule. Li: 2 – 1 has only 1 Completely Filled Principle Energy Level 2 To help you review the 2n rule complete the following chart PEL (n) Max e- 1 2 3 4 5 6 7 For the Following: a) Copy the electron configuration from the Periodic Table b) Determine the number of Occupied Principle Energy Levels (PEL) c) Determine the number of Completely Filled Principle Energy Levels Element Electron Configuation # Occupied PEL # Completely Filled PEL C Na O Cl He F Ne Si Zn Au 3 4. Drawing Bohr Diagrams of Atoms: 1) A circle is used for the nucleus- the # protons (# p or +) and the # of neutrons (#n) are placed in the circle. 2) A ring is drawn around the nucleus for each energy level. 3) The electrons for each energy level are placed in pairs symmetrically around the nucleus For F: atomic # = _____________ atomic mass = _____________ electron configuration: ______________ # p = _________ # n =____________ For Al : atomic # = _____________ atomic mass = _____________ electron configuration: ______________ # p = _________ # n =____________ Going Backwards: Determining the identity of an element from the Bohr diagram: # p = _____________ # n =______________ atomic # = _____________ atomic mass = # p + # n = ________________ electron configuration: # p = _____________ # n =______________ atomic # = _____________ atomic mass = # p + # n = ________________ electron configuration: ____________________________________ Isotopic Notation: ____________________________________ Isotopic Notation: 4 II. Introduction to Light Visible Light (energy we see with): part of the Electromagnetic Spectrum 1. Two theories to explain light’s behavior: Waves Particles of Packets of Energy There was evidence for both models so the two theories were put together!! Light: QUANTUM THEORY OF LIGHT a) packets or bundles of energy called _________________ or ______________ b) travel in wave-like fashion c) produced when electrons drop from ______________ energy levels to _______ energy levels (the greater the drop, the greater the energy the light has) 5 2. Properties of Light Wavelength () - ____________________________________________ Frequency (F) - ______________________________________________ (units: Cycles / second OR Hertz) Energy (E) - __________________________________ Speed (velocity) – same for all electromagnetic radiation _______________ Relationships: Frequency and Energy: Type _________________ F ______, E ________ or F ______, E ________ Frequency and Wavelength: Type _________________ F ______, ________ or F ______, ________ Wavelength and Energy: Type _________________ ______, E ________ or ______, E ________ 3. Bright Line Spectra and Continuous Spectrum A. The Rainbow: A Continuous Spectrum Long Low F Low E R O Y G B I V Short High F High E LONG STEM RED ROSES: All “L’s” go together with RED 6 Continuous Spectrum when radiation from the sunlight passes through a prism, a rainbow – a spectrum of colors – is seen the colors are not separated from one another but blend together due to the overlap of the line spectra of the 67 different elements in the sun lightbulb R O Y G B I V C. Bright Line Spectrum when radiation from an excited atom (element) passes through a prism, the radiation is separated into various wavelengths and colors Colors are not blended – spectrum is discontinuous – and you observe lines of color at different locations R O Y G B I V Flame D. Bright Line Spectra and the Bohr Atom An electron must absorb energy before it can give off colors we see in the bright line spectra. When energy is added, the electron moves to a higher energy level. The potential energy of the electron increases. This is an unstable situation. In order for the electron to return to a lower and more stable energy level, the added energy must be given off. When the electrons return to the lower energy levels this decreases the PE because the added energy is given off and the colors of the bright line spectra are seen. Moving electrons to different energy levels requires different amounts of energy. These different amounts of energy produce the different colors. 7 Movement of an electron between the same 2 energy levels in DIFFERENT elements will produce different colors. The energy between the energy levels depends on the number of protons and the number of electrons that each element has. BRIGHT LINE SPECTRA are produced when “electrons in the EXCITED STATE” fall back to lower energy levels of the GROUND STATE. Unlike the continuous spectrum of sunlight, only certain colors will be present in the BRIGHT LINE SPECTRA. The BRIGHT LINE SPECTRUM is like a “fingerprint” of the element that produced the spectrum. Like a fingerprint, the BRIGHT LINE SPECTRA can be used to identify the element. When viewed with a spectroscope, the individual bands of colors in the BRIGHT LINE SPECTRUM can be seen and the wavelength of each band determined. 8 1. Below are the BRIGHT LINE SPECTRA of three elements. From the position of the lines determine which element is the unknown. (HINT: Match up the lines present in the unknown with the three known elements.) Unknown element = ____________ Element X Element Y Element Z Unknown 2. Which of the two elements above are present in the BRIGHT LINE SPECTRUM given below? (HINT: Match up the lines present with the three known elements. Only two patterns should match perfectly.) ____________ and _____________ 9 5. Ground and Excited States A) The lowest possible energy state that an electron can occupy is called the __________ ____________. This is a very __________ condition. The principle energy levels, which are occupied match those predicted by the electron configuration on the periodic table. When electrons gain energy, the electrons move to higher principle energy levels then they would normally occupy. This unstable situation is called the _____________ _______________. The electrons will release the absorbed energy, often seen as the bright line spectrum of the element, and fall back to the ground state. A) How to tell when energy will be absorbed or released The Principle Energy Level (n) changes: If the number of the principle energy level (n) goes up, then energy is _____________ or ______________ n = 1 to n = 3 OR n = 3 to n = 4 If the number of the principle energy level (n) goes down, then energy is _____________ or ______________ n = 2 to n = 1 OR n = 5 to n = 3 If the energy is emitted, then ____________________ (colors) are seen. Determine if energy is added/absorbed (+E) or released/emitted (-E) for the following transitions ; circle the 1) n = 1 to n = 2 ______________ 6) n = 1 to n = 5 ______________ 2) n = 4 to n = 3 ______________ 7) n = 4 to n = 2 ______________ 3) n = 2 to n = 1 ______________ 8) n = 2 to n = 3 ______________ B) How do you tell the excited and ground state apart from the electron configuration?? Ground State: Matched the predicted electron configuration found on the periodic table. In other words, it follows the order given Ground State for Oxygen (O) on PT= 2 – 6 (8 total electrons) Possible Excited State for Oxygen = 1 – 7 (still 8 total electrons) The first energy level is not filled before moving into the second energy level. The KEY here is that the configuration does not MATCH the one on the PT. Another possible excited state for oxygen: 2 – 5 – 1 (still 8 total electrons) 10 For the following elements, fill in the chart and determine if the electron configuration is in the GROUND STATE (GS) or EXCITED STATE (ES). Element Electron Symbol Configuration C 2-4 F 1-8 Cl 2-8-7 B 2-1-1-1 Na 2-7-2 O 2-6 S 1-8-7 Zn 2-8-18-2 Br 1-7-17-8-1-1 Br 2-8-18-7 Principle Energy Levels Ground or excited state? III. UpDaTiNg ThE BoHR MoDeL: QuAnTuM oR WaVe MeChAnIcaL MoDeL The Bohr Model was very good at explaining many things about atoms and electrons and how they behaved. Just like your wardrobe needs updating, so did the model of the atom. A revolution in physics occurred in the early 1900’s when experiments showed that matter, just like light energy, could have a dual nature…it can act as a particle or a wave. 1. The Wave Mechanical Model A. Still has a dense positive nucleus where protons and neutrons are located B. Using complicated math, this math showed that electrons were not moving in definite fixed orbits like planets but had distinct amounts of energy. C. Four “Quantum Numbers” are used to describe the location of the electron. 2. Four “Quantum Numbers” 1) Principle Energy Levels (PEL) are also called the PRINCIPLE QUANTUM NUMBER.) Same as the Bohr Energy levels (n = 1, 2, 3, 4, 5, 6, 7) 2) Sublevels: PEL get divided into sublevels. Like Different room types- gives the 3-D shape where electrons are found. 11 These sublevels are designated: s, p ,d and f The number of sublevels is determined by the number of the princple energy level (n): n = # sublevels Within the same principle energy level: the sublevels have different energies: s p d f lowest energy highest energy 3) Orbitals are “regions” or “areas” around the nucleus The sublevels are divided into orbitals (rooms) where electrons are found. Each orbital can hold 2 electrons. The number of orbitals depends on the sublevel type: The number of electrons in a sublevel depends on the number of orbitals Sublevel # orbitals x2= # of electrons in sublevel s x2= p x2= d x2= f x2= An orbital is defined as a region in which an electron with a particular amount of energy is most likely to be found. the probability of finding an electron near the nucleus is ________ the probability of finding an electron far away from the nucleus is __________ This volume outside the nucleus are often described as an Electron Cloud. 4) SPIN: or Within an orbital, the two electrons spin in opposite directions to overcome the repulsion they feel for each other (remember- like charges repel.) 12 Principle Energy Level Sublevel(s) Present # Orbitals Present # electrons in Sublevel Total # of e per PEL 1 2 3 4 13 Remember the tricks for number of sublevels, orbitals and total number of electrons For Principle Energy Level (PEL) n n = _________________________ & n = ___________________________ n2 = _____________________ & 2 n2 = ________________________ 2. Quantum Atom Electron Configuration from the Periodic Table There are two ways to show the Quantum Atom Electron Configuration. One way shows the number of electrons in the Principle Quantum Level (PEL) and Sublevel type (letter). The other way, known as BOX DIAGRAMS, show all four quantum numbers by using boxes for orbitals and arrows for electrons to show the opposite spin of the electrons. Using the electron configuration from the periodic table, we will do both types. For Hydrogen: EC form PT is 1 Quantum Atom Box Diagram 1s1 PEL 1s # of electrons SUBLEVEL PEL ORBITAL SUBLEVEL ARROW SHOW SPIN RULES TO REMEMBER WHEN DRAWING BOX DIAGRAMS; * S has one orbital so draw 1 box * P has 3 orbitals so draw 3 boxes, * Each “P” box in a sublevel must have an electron before pairing up because each orbital has the same energy as the other orbitals (Boxes) * Electrons spin in opposite directions! Element Elec. Config. From P T Quantum Atom E. C. Box Diagrams H He Li Be 14 Element Elec. Config. From P T Quantum Atom E. C. Box Diagrams B C N O F Ne Na Mg Al Si P 15 Element Elec. Config. From P T Quantum Atom E. C. Box Diagrams S Cl Ar K Ca After argon (Ar) the energy levels begin to overlap and things get complicated. We will not be doing elements above Calcium. However…. How many orbitals are in the d sublevel? _________ f sublevel? _____________ How many boxes would you draw for the d sublevel? _________ f sublevel? __________ 16 IV. The Kernel, Valence Electrons and Lewis (Electron) Dot Diagrams A very powerful tool for showing how different elements bond together, called Lewis (Electron) Dot Diagrams, was developed by a chemist named Lewis. Many times in chemical bonding, only the electrons on the outside or in the highest energy level, called the VALENCE SHELL, actually become involved in bonding to form compounds. We are going to look at the Lewis (Electron) Dot Diagrams and elements in this next section. Valence Shell: Outermost energy level of an element (highest number) Oxygen: O 2-6 the 2nd principle energy level is the valence shell Valence Electrons (VE): electrons located in the outermost energy level - these are the electrons which are the furthest to the right in the electron configuration found on the PT - Oxygen: O 2-6 the 6 electrons are the valence electrons - In a dot diagram, the VE are represented by dots: Kernel: This is the nucleus and all the other electrons located in the inner energy levels In a dot diagram, the chemical symbol represents the kernel: O The valence shell always contains only 4 orbitals. These orbitals are represented by the four sides around the symbol. The top side represents s orbital which has less energy than the other three p orbitals. The other three p orbitals have the same amount of energy. First 2 electrons are always placed first in this top orbital. Going around clockwise, one electron is placed on each remaining side until you need to pair the electrons up. (You don’t draw the OVALs!) s Orbital lower energy than others O O the same energy p orbitals Symbol Li Electron Configuration Dot Diagram Li Be B C Be B C the same energy p oribitals N O N O F Ne F Ne 17 Guided Practice: look for a pattern! Symbol Electron Configuration (Circle the Valence Electrons (VE) Number of VE Dot Diagram S Se Na K Si Ge Cl Br Ar Kr What was the pattern for electron dot diagrams? ___________________________________________________________________ ___________________________________________________________________ 18