Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 170 - Cooley Pre-Calculus OCC Section 5.5 – The Inverse Trigonometric Functions We will now construct inverse functions from our six trigonometric functions by restricting the domain of the each function so that it will be one-to-one. We need each graph of a function and its inverse to be able to pass the Vertical Line Test (to be a function) and the Horizontal Line Test (to be one-to-one which means invertible.) See section 1.8. y = sin x y = cos x   x     x   y = sin x   y = cos x  2 x 2 y = sin–1 x 0 x  y = cos–1 x y = tan x   x   , except for odd multiples of 2 y = tan x    2 x 2 y = tan–1 x -1- Math 170 - Cooley Pre-Calculus OCC Section 5.5 – The Inverse Trigonometric Functions Inverse Function Name Usual Notation Definition Domain Range Inverse Sine (arcsine) y  sin 1 x y = arcsin x x = sin y [–1, +1]     2 , 2    Inverse Cosine (arccosine) y  cos 1 x y = arcos x x = cos y [–1, +1] 0,   Inverse Tangent (arctangent) y  tan 1 x y = arctan x x = tan y (–, +)     2 , 2    Inverse Function Name Usual Notation Inverse Cosecant (arccosecant) y  csc 1 x y = arccsc x y  sec 1 x Inverse Secant (arcsecant) y = arcsec x Inverse Cotangent (arccotangent) Definition Domain x = csc y (–, –1]  [+1, +) x = sec y (–, –1]  [+1, +) x = cot y (–, +) 1 y  cot x y = arccot x Range   2  y  2 , y0 0  y , y   2 0,   Properties of Inverse Functions sin 1  sin x   x where   x  cos1 (cos x)  x 2 2 1 sin  sin x   x where 1  x  1 cos  cos x   x 1 tan 1  tan x   x tan  tan x   x 1 where   x where 0  x   where 1  x  1  2 2 where   x   Notation for Inverse Functions The inverse functions are denoted by a superscript “–1” between the name of the function and its argument. This notation does not mean an exponent of –1, but is similar to inverse function notation such as f 1 read “f inverse”. So, sin 1 x is read “sine inverse of x” , and … sin x 2  sin 2 x , but 1 sin 1 x  sin x  . (Note:  sin x   1 1  csc x , so obviously sin 1 x  csc x or we wouldn’t have different names for them!) sin x -2- Math 170 - Cooley Pre-Calculus OCC Section 5.5 – The Inverse Trigonometric Functions 1   Example: Find the exact value of the expression: sin  cos1  2  Solution  So, we need to find the angle  , 0     , whose cosine equals cos   1 . Thus, 2 1 , 0  2  3 1 3    Now, sin  cos1   sin    2   3 2  Example: Use a calculator to find the value of the following expression rounded to two decimal places. csc 1 (5) Solution    1 1 , since csc1 (5)  sin 1   . 2 2 5  5 1 1 Now, sin   , so  lies in quadrant I. The calculator yields sin 1    0.20 , which is an 5  5 So, we seek to find the angle  ,    , whose sine equals angle in quadrant I, so csc1 (5)  0.20  Example: Use a calculator to find the value of the following expression rounded to two decimal places. cot 1 ( 5) Solution  So, we seek to find the angle  , 0     , whose tangent equals  1 , since 5 1  1  cot 1 (  5)  tan 1    . Now, tan    5 , so  lies in quadrant II. The calculator yields 5   1  tan 1     0.42 , which is an angle in quadrant IV. Since,  is in quadrant II, 5    0.42    2.72 . Therefore, cot 1 (  5)  2.72 . -3- Math 170 - Cooley Pre-Calculus OCC Section 5.5 – The Inverse Trigonometric Functions  Exercises: Find the exact value of each expression without using a calculator. 1) cos 1 1 2) arccos(1) 3) tan 1 (1)  3 4) sin 1     2   3 5) tan 1    3   2  6) csc 1    3 7) sec1 (1) 8) arccsc(1) 9) cot 1 1 10) cot 1  0  Use a calculator to find the value of each expression rounded to two decimal places. 11) cos 1 0.6 12) sin 1 (0.23) 13) tan 1 (0.4) 14) cos1 (0.44) 15) sec1 ( 3) 16) cot 1 ( 8.1) Find the exact value, if any, of each expression. Do not use a calculator.     17) sin 1 sin       10     2  18) cos cos 1      3     3 19) sin 1 sin     7 21) tan  tan 1  2     7   22) cos 1 cos     4  23) cos1 cos      20) sin sin 1  2   24) cos cos 1    -4- Math 170 - Cooley Pre-Calculus OCC Section 5.5 – The Inverse Trigonometric Functions  Exercises: Find the exact value of each expression.   1  25) tan sin 1      2     3  26) cos sin 1     2    27) sec tan 1 3 2   28) tan 1  tan  3     2  29) cos sin 1   3       30) sin  tan 1  3    1  31) csc  tan 1     2   32) sec1 (2) 33) csc1  Answers: 1) 0; 2)  ; 3)   4 ; 4)   3 ; 5)  6 ; 6)  3 ; 7) 0 ; 8)    2 ; 9)  4 ; 10)  2   2 ; 11) 0.93; 2 3 ; 18)  ; 19)  ; 3 10 7 3 1   20) Not defined; 21) –2; 22) ; 23)  ; 24) Not defined; 25)  ; 26) ; 27) 2; 28)  ; 3 4 3 2 7 3 10 3 2  29) ; 30)  ; 31)  ; 32) ; 33) . 3 10 3 3 4 12) 0.288  0.23 ; 13) –0.38; 14) 2.03; 15) 1.91; 16) 3.02; 17)   -5-