* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Written - Rose
Galvanometer wikipedia , lookup
Integrating ADC wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Josephson voltage standard wikipedia , lookup
Negative resistance wikipedia , lookup
Power electronics wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Schmitt trigger wikipedia , lookup
Voltage regulator wikipedia , lookup
Wilson current mirror wikipedia , lookup
Operational amplifier wikipedia , lookup
Opto-isolator wikipedia , lookup
Power MOSFET wikipedia , lookup
Two-port network wikipedia , lookup
Surge protector wikipedia , lookup
Electrical ballast wikipedia , lookup
Current source wikipedia , lookup
Rectiverter wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Current mirror wikipedia , lookup
Example 20 R4 + v4 _ + + is vs i1 R1 i2 _ R2 i3 v3 R3 _ Solution Given that i s 6mA , v s 6V , 2i1 3i2 , i2 2i3 , v4 : v3 2 : 1 , we need to specify the resistors to meet the following specification. The total current of all the branches is given. Based on KCL, the sum of the currents which enter the node is equal to the sum of the currents which leaves the node. (1) i S i1 i 2 i3 Given that 2i1 3i2 , it can be written as i1 1.5i 2 (2) The equation i2 2i3 is divided by 2 on both sides, i3 0.5i 2 (3) Substitute (2) and (3) into (1), we get i S 1.5i 2 i 2 0.5i 2 3i 2 6mA We can solve for i2 2mA (4) Substitute (4) into (2) and (3), i1 1.5i 2 1.5 2 3mA . i3 0.5i 2 0.5 2 1mA Using Ohm’s law, R1 vs 6 v 6 6k , R2 s 3k i1 1 i2 2 For the resistors R3 and R 4 , they are in series, the voltage across the two resistors are v S v3 v 4 v3 2v3 6V We can solve for v 3 2V v 4 6 2 4V . Apply ohms’ law, R3 v3 2 v 4 2k and R4 4 4k . i3 1 i3 1 We have solved the problem completely. Here we can verify our result easily by voltage and current division. R3 and R 4 are series connected so that they can be considered as a voltage divider. The voltage across the resistor R3 should be the total voltage across the two resistors multiplied by the ratio of its resistance divided by the total resistance. v3 6 2k 2V 2k 4k Similarly, v 4 6 . 4k 4V 2k 4k . So v4 : v3 2 : 1 , which is consistent with the specification given before. Also we can verify the result using the current divider, which is a parallel-connected resistance circuit. The two resistors can be combine into a since they are in series. For the parallel circuit, the current through one of the resistor is proportional to the total current. The proportionality is the equivalent resistance of the parallel resistors divided by its resistance. The equivalent resistance is 1 1k . 1 1 1 2 3 6 R 1k The current i1 6 eq 6 3mA . It is also consistent with the result we got before. 2k 2k Req Similarly we can calculate the currents for the other two branches. So the values of the currents should also be consistent with the specification in the problem.