Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Journal of Biogeography SUPPORTING INFORMATION Scale-dependent adaptive evolution and morphological convergence to climatic niche in Californian eriogonoids (Polygonaceae) Anna Kostikova, Glenn Litsios, Sarah Burgy, Laura Milani, Peter B. Pearman and Nicolas Salamin Appendix S1 Table of evolutionary hypotheses and locations of sampling sites, sample representativeness and herbarium codes for collected species. Section (a) lists the different evolutionary processes, associated macroevolutionary patterns and empirical examples that are described in this study, and gives details of the sampling efforts and specimens herbarium codes deposited in the Herbarium of Rancho Santa Ana Botanical Garden (RSA). Section (b) reports locations of sampling sites across California. Section (c) demonstrates that 56 species make a representative sample of Eriogonoideae morphological and niche diversity. Section (d) lists all the RSA codes associated with the sampled species. (a) A list of the different evolutionary processes, associated macroevolutionary patterns and empirical examples that are described in this study. Mode of Evolutionary Phylogenetic Evolutionary evolution process signal model Neutral Random genetic Low (<<1) drift Observed pattern Example Brownian Labile or convergent Niche structure of meadow motion (BM) neutral evolution of a plant communities; trait, the mean value of (Silvertown et al., 2006); a trait do not change simulations of trait over time, only convergence under neutral variance increases mode of evolution (Stayton, 2008). Neutral Random genetic High ( >= 1) drift Brownian Conservation of a trait, Eukaryotic genome size motion (BM) the mean value of a (nuclear DNA amount) trait do not change (Beaulieu et al., 2008) over time, only variance increases Adaptive Constant/ Low (<<1) Ornstein– Conservation of a trait, Agamid lizards (Smith et Fluctuating Uhlenbeck the mean value can al., 2011) stabilizing selection model (OU) change over time, with a single variance stabilizes Adaptive Adaptive optimum with time Ornstein– Conservation of a trait, Evergreen sclerophylls in Fluctuating Uhlenbeck the mean value can Mediterranean climate stabilizing selection model (OU) change over time, (Ackerly, 2004) with a single variance stabilizes optimum with time Ornstein– Diversification of a Body size in the Anolis directional Uhlenbeck trait, the mean value (Losos et al., 2003; Butler selection model (OU) can change over time, & King, 2004); with a multiple variance stabilizes optima with time Constant/ Divergent / High ( >= 1) Low (<<1) inflorescence and leaf-size in Acer (Verdú & Gleiser, 2006) Adaptive Divergent / High ( >= 1) Ornstein– Diversification or Chromosome number in directional Uhlenbeck conservation of a trait, Carex (Hipp, 2007) selection model (OU) the mean value can with a multiple change over time, optima variance stabilizes with time REFERENCES Ackerly, D.D. (2004) Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. The American Naturalist, 163, 654-670. Beaulieu, J.M., Leitch, I.J., Patel, S., Pendharkar, A. & Knight, C.A. (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist, 179, 975-986. Butler, M.A. & King, A.A. (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. The American Naturalist, 164, 683-695. Hipp, A.L. (2007) Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution, 61, 2175-2194. Losos, J.B., Leal, M., Glor, R.E., de Queiroz, K., Hertz, P.E., Rodríguez Schettino, L., Chamizo Lara, A., Jackman, T.R. & Larson, A. (2003) Niche lability in the evolution of a Caribbean lizard community. Nature, 424, 542-545. Silvertown, J., McConway, K., Gowing, D., Dodd, M., Fay, M.F., Joseph, J.A. & Dolphin, K. (2006) Absence of phylogenetic signal in the niche structure of meadow plant communities. Proceedings of the Royal Society B: Biological Sciences, 273, 39-44. Smith, K.L., Harmon, L.J., Shoo, L.P. & Melville, J. (2011) Evidence of constrained phenotypic evolution in a cryptic species complex of agamid lizards. Evolution, 65, 976-992. Stayton, C.T. (2008) Is convergence surprising? An examination of the frequency of convergence in simulated datasets. Journal of Theoretical Biology, 252, 1-14. Verdú, M. & Gleiser, G. (2006) Adaptive evolution of reproductive and vegetative traits driven by breeding systems. New Phytologist, 169, 409-417. (b) Locations of sampling sites across California. (c) Sample representativeness. Test for the differences between the morphology and climatic niche of the sample used in the current analysis versus the complete distribution of Eriogonoideae morphology. A Student’s ttest shows that there is no statistically significant difference between the sample of 56 species used in the analysis and the distribution of values for the Eriogonodeae-wide dataset (180 species). Furthermore, the shape of the distributions of samples is identical to the distributions of the Eriogonoideae-wide dataset. Kolmogorov–Smirnov test P-value Leaf length D = 0.1676 P-value = 0.2169 Leaf width D = 0.1085 P-value = 0.7416 Plant height D = 0.1049 P-value = 0.7765 Rosette diameter D = 0.1495 P-value = 0.6663 PC1 D = 0.7081 P-value = 0.3903 PC2 D = 0.5844 P-value = 0.56 PC3 D = 0.1809 P-value = 0.8568 30 20 0 10 frequency 40 50 10 20 30 40 50 60 70 Leaf width 0 frequency Leaf length -1 0 1 2 3 -2 -1 0 1 2 log-transformed leaf width Plant height Rosette diameter 20 15 10 frequency 40 0 5 20 0 frequency 60 25 30 80 log-transformed leaf length -4 -3 -2 -1 0 1 2 log-transformed plant height 3 -2 -1 0 1 2 log-transformed rosette diameter 3 (d) Herbarium codes (the RSA Herbarium) Species Code Eriogonum inerme RSA 782616 Eriogonum davidsonii RSA 782511 Eriogonum elongatum RSA 782675 Eriogonum nudum RSA 782514 Hollisteria lanata RSA 784653 Eriogonum gracile RSA 782519 Chorizanthe leptotheca RSA 782678 Eriogonum fasciculatum RSA 782617 Eriogonum nidularium RSA 782680 Eriogonum pusillum RSA 781860 Chorizanthe brevicornu RSA 782681 Eriogonum marifolium RSA 781876 Eriogonum inflatum RSA 782682 Eriogonum brachyanthum RSA 781877 Chorizanthe spinosa RSA 782683 Eriogonum breedlovei RSA 781342 Chorizanthe leptotheca RSA 784655 Eriogonum latifolium RSA 782167 Chorizanthe fimbriata RSA 784658 Chorizanthe pungens RSA 781475 Eriogonum elongatum RSA 784659 Eriogonum parvifolium RSA 781462 Chorizanthe polygonoides RSA 784660 Chorizanthe diffusa RSA 781464 Pterostegia drymarioides RSA 784661 Eriogonum latifolium RSA 781465 Chorizanthe procumbens RSA 784513 Eriogonum parvifolium RSA 781467 Dodecahema leptoceras RSA 784514 Eriogonum elongatum RSA 781469 Chorizanthe leptotheca RSA 784515 Chorizanthe palmeri RSA 781470 Lastarriaea coriacea RSA 784516 Chorizanthe clevelandii RSA 781534 Eriogonum davidsonii RSA 785066 Chorizanthe palmeri RSA 781539 Eriogonum gracile RSA 785072 Eriogonum trichopes RSA 782604 Eriogonum parishii RSA 785074 Eriogonum trichopes RSA 782607 Eriogonum davidsonii RSA 785076 Eriogonum davidsonii RSA 782609 Eriogonum kennedyi RSA 785080 Eriogonum fasciculatum RSA 782610 Eriogonum elegans RSA 784665 Chorizanthe xanti RSA 782612 Eriogonum brachypodum RSA 784666 Eriogonum fasciculatum RSA 782613 Eriogonum nidularium RSA 784668 Eriogonum gracile RSA 782615