Download Appendix S1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Journal of Biogeography
SUPPORTING INFORMATION
Scale-dependent adaptive evolution and morphological convergence to climatic niche in
Californian eriogonoids (Polygonaceae)
Anna Kostikova, Glenn Litsios, Sarah Burgy, Laura Milani, Peter B. Pearman and
Nicolas Salamin
Appendix S1 Table of evolutionary hypotheses and locations of sampling sites, sample
representativeness and herbarium codes for collected species.
Section (a) lists the different evolutionary processes, associated macroevolutionary patterns and
empirical examples that are described in this study, and gives details of the sampling efforts and
specimens herbarium codes deposited in the Herbarium of Rancho Santa Ana Botanical Garden
(RSA). Section (b) reports locations of sampling sites across California. Section (c) demonstrates
that 56 species make a representative sample of Eriogonoideae morphological and niche
diversity. Section (d) lists all the RSA codes associated with the sampled species.
(a) A list of the different evolutionary processes, associated macroevolutionary patterns and empirical examples that are described in
this study.
Mode of
Evolutionary
Phylogenetic
Evolutionary
evolution
process
signal
model
Neutral
Random genetic
Low (<<1)
drift
Observed pattern
Example
Brownian
Labile or convergent
Niche structure of meadow
motion (BM)
neutral evolution of a
plant communities;
trait, the mean value of
(Silvertown et al., 2006);
a trait do not change
simulations of trait
over time, only
convergence under neutral
variance increases
mode of evolution (Stayton,
2008).
Neutral
Random genetic
High ( >= 1)
drift
Brownian
Conservation of a trait,
Eukaryotic genome size
motion (BM)
the mean value of a
(nuclear DNA amount)
trait do not change
(Beaulieu et al., 2008)
over time, only
variance increases
Adaptive
Constant/
Low (<<1)
Ornstein–
Conservation of a trait,
Agamid lizards (Smith et
Fluctuating
Uhlenbeck
the mean value can
al., 2011)
stabilizing selection
model (OU)
change over time,
with a single
variance stabilizes
Adaptive
Adaptive
optimum
with time
Ornstein–
Conservation of a trait,
Evergreen sclerophylls in
Fluctuating
Uhlenbeck
the mean value can
Mediterranean climate
stabilizing selection
model (OU)
change over time,
(Ackerly, 2004)
with a single
variance stabilizes
optimum
with time
Ornstein–
Diversification of a
Body size in the Anolis
directional
Uhlenbeck
trait, the mean value
(Losos et al., 2003; Butler
selection
model (OU)
can change over time,
& King, 2004);
with a multiple
variance stabilizes
optima
with time
Constant/
Divergent /
High ( >= 1)
Low (<<1)
inflorescence and leaf-size
in Acer (Verdú & Gleiser,
2006)
Adaptive
Divergent /
High ( >= 1)
Ornstein–
Diversification or
Chromosome number in
directional
Uhlenbeck
conservation of a trait,
Carex (Hipp, 2007)
selection
model (OU)
the mean value can
with a multiple
change over time,
optima
variance stabilizes
with time
REFERENCES
Ackerly, D.D. (2004) Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California
chaparral. The American Naturalist, 163, 654-670.
Beaulieu, J.M., Leitch, I.J., Patel, S., Pendharkar, A. & Knight, C.A. (2008) Genome size is a strong predictor of cell size and stomatal
density in angiosperms. New Phytologist, 179, 975-986.
Butler, M.A. & King, A.A. (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. The American
Naturalist, 164, 683-695.
Hipp, A.L. (2007) Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution, 61, 2175-2194.
Losos, J.B., Leal, M., Glor, R.E., de Queiroz, K., Hertz, P.E., Rodríguez Schettino, L., Chamizo Lara, A., Jackman, T.R. & Larson, A.
(2003) Niche lability in the evolution of a Caribbean lizard community. Nature, 424, 542-545.
Silvertown, J., McConway, K., Gowing, D., Dodd, M., Fay, M.F., Joseph, J.A. & Dolphin, K. (2006) Absence of phylogenetic signal
in the niche structure of meadow plant communities. Proceedings of the Royal Society B: Biological Sciences, 273, 39-44.
Smith, K.L., Harmon, L.J., Shoo, L.P. & Melville, J. (2011) Evidence of constrained phenotypic evolution in a cryptic species
complex of agamid lizards. Evolution, 65, 976-992.
Stayton, C.T. (2008) Is convergence surprising? An examination of the frequency of convergence in simulated datasets. Journal of
Theoretical Biology, 252, 1-14.
Verdú, M. & Gleiser, G. (2006) Adaptive evolution of reproductive and vegetative traits driven by breeding systems. New Phytologist,
169, 409-417.
(b) Locations of sampling sites across California.
(c) Sample representativeness.
Test for the differences between the morphology and climatic niche of the sample used in the
current analysis versus the complete distribution of Eriogonoideae morphology. A Student’s ttest shows that there is no statistically significant difference between the sample of 56 species
used in the analysis and the distribution of values for the Eriogonodeae-wide dataset (180
species). Furthermore, the shape of the distributions of samples is identical to the distributions of
the Eriogonoideae-wide dataset.
Kolmogorov–Smirnov test
P-value
Leaf length
D = 0.1676
P-value = 0.2169
Leaf width
D = 0.1085
P-value = 0.7416
Plant height
D = 0.1049
P-value = 0.7765
Rosette
diameter
D = 0.1495
P-value = 0.6663
PC1
D = 0.7081
P-value = 0.3903
PC2
D = 0.5844
P-value = 0.56
PC3
D = 0.1809
P-value = 0.8568
30
20
0
10
frequency
40
50
10 20 30 40 50 60 70
Leaf width
0
frequency
Leaf length
-1
0
1
2
3
-2
-1
0
1
2
log-transformed leaf width
Plant height
Rosette diameter
20
15
10
frequency
40
0
5
20
0
frequency
60
25
30
80
log-transformed leaf length
-4
-3
-2
-1
0
1
2
log-transformed plant height
3
-2
-1
0
1
2
log-transformed rosette diameter
3
(d) Herbarium codes (the RSA Herbarium)
Species
Code
Eriogonum inerme
RSA
782616
Eriogonum davidsonii
RSA
782511
Eriogonum elongatum
RSA
782675
Eriogonum nudum
RSA
782514
Hollisteria lanata
RSA
784653
Eriogonum gracile
RSA
782519
Chorizanthe leptotheca
RSA
782678
Eriogonum fasciculatum
RSA
782617
Eriogonum nidularium
RSA
782680
Eriogonum pusillum
RSA
781860
Chorizanthe brevicornu
RSA
782681
Eriogonum marifolium
RSA
781876
Eriogonum inflatum
RSA
782682
Eriogonum brachyanthum
RSA
781877
Chorizanthe spinosa
RSA
782683
Eriogonum breedlovei
RSA
781342
Chorizanthe leptotheca
RSA
784655
Eriogonum latifolium
RSA
782167
Chorizanthe fimbriata
RSA
784658
Chorizanthe pungens
RSA
781475
Eriogonum elongatum
RSA
784659
Eriogonum parvifolium
RSA
781462
Chorizanthe polygonoides
RSA
784660
Chorizanthe diffusa
RSA
781464
Pterostegia drymarioides
RSA
784661
Eriogonum latifolium
RSA
781465
Chorizanthe procumbens
RSA
784513
Eriogonum parvifolium
RSA
781467
Dodecahema leptoceras
RSA
784514
Eriogonum elongatum
RSA
781469
Chorizanthe leptotheca
RSA
784515
Chorizanthe palmeri
RSA
781470
Lastarriaea coriacea
RSA
784516
Chorizanthe clevelandii
RSA
781534
Eriogonum davidsonii
RSA
785066
Chorizanthe palmeri
RSA
781539
Eriogonum gracile
RSA
785072
Eriogonum trichopes
RSA
782604
Eriogonum parishii
RSA
785074
Eriogonum trichopes
RSA
782607
Eriogonum davidsonii
RSA
785076
Eriogonum davidsonii
RSA
782609
Eriogonum kennedyi
RSA
785080
Eriogonum fasciculatum
RSA
782610
Eriogonum elegans
RSA
784665
Chorizanthe xanti
RSA
782612
Eriogonum brachypodum
RSA
784666
Eriogonum fasciculatum
RSA
782613
Eriogonum nidularium
RSA
784668
Eriogonum gracile
RSA
782615
Related documents